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Survey of Science and Analysis Applications	


-No two analyses are alike	

-Analysis at scale is data-movement bound 	

-Data movement operations are common among different analyses 

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of hydrodynamics and combustion 



Executive Summary���
DIY helps the user parallelize their analysis algorithm with 

data movement tools.���

A common set of operations can be 
identified and encoded in a library	


-Decompose the domain	

-Assign subdomains to processors	

-Access data and store results	

-Combine local and global operations	

-Balance load, minimize communication	

-Overlap communication with computation	

-Scale efficiently	
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High-level motivations and assumptions 	


-Large-scale analysis (visual and numerical) 
in parallel on distributed-memory HPC 
machines	


-Scientists, visualization researchers, tool 
builders	

-In situ, coprocessing, postprocessing	

-Parallelizing from scratch is arduous	

-Scalable data movement is key	

-The user is the expert and may already 
have serial code for the analysis.	


Benefits	


-Researchers can focus on their own work, not on building parallel infrastructure	

-Analysis applications can be custom	

-Reuse core components and algorithms for performance and programmer productivity	




DIY Structure	
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Library structure	


Written in C++	

C bindings	

Future Fortran bindings	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

-MPI-IO, BIL	


Domain decomposition	

-Decompose domain	

-Describe existing decomposition	


Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	
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Data Model	
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Features	


-All input data and output analysis data is represented as MPI data types	

-MPI data types can represent any C/C++/Fortran language structure	

-User does not serialize / deserialize types prior to use	

-Zero copy at application level saves time and space	

-Custom MPI data types are an advanced topic	

-DIY assists in MPI data type creation	


struct Particle {	

 float[4] pt;	


 int steps;	

};	


MPI_Datatype type;	

struct map_block_t map[] = {	


 {MPI_FLOAT,  OFST,  4,  offsetof(struct Particle, pt),      1},	

 {MPI_INT,       OFST,  1,  offsetof(struct Particle, steps),  1},	


};	

DIY_Create_datatype(0, 2, map, &type);	


C data structure	
 DIY MPI data type	




I/O: Parallel Reading Data and Writing Analysis Results	
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Data input	


-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated  into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains.	


Input algorithm	


Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 
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Analysis output	


-Binary	

-General header/data blocks	

-Footer with indices	

-Application assigns semantic value to DIY blocks	

-Compression	




3 Communication Patterns	
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Nearest neighbor	
 Swap-based 
reduction	


Merge-based 
reduction	




Example API Use	
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// initialize	

int dim = 3; // number of dimensions in the problem	


int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	


MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size, 

MPI_COMM_WORLD);	


// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	


int ghost = 0; // besides sharing a face, whether additional layers of ghost cells are needed	

int ghost_dir = 0; // ghost cells apply to all or particular sides of a block	


int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	


// read data	

 for (int i = 0; i < nblocks; i++) {	


    DIY_Block_starts_sizes(i, min, size);	

    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	


}	

DIY_Read_blocks_all();	




Example API Continued	
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// your own local analysis	


// merge results, in this example	

// could be any combination / repetition of the three communication patterns	


int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	


int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	


// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	


// terminate	


DIY_Finalize(); // finalize DIY before MPI	

MPI_Finalize();	
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Parallel Time-Varying Flow Analysis	


Approach	


-In core / out of core processing of time 
steps	

-Simple load balancing (multiblock 
assignment, early particle termination)	


-Adjustable synchronization 
communication 	


Collaboration with the Ohio State University and University of Tennessee Knoxville 
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Algorithm	

for (epochs) {	

  read my process’ data blocks	

  for (rounds) {	

    for (my blocks) { 	

      advect particles	

    }	

    exchange particles	

  } 	

}	


Pathline tracing of 32 
time-steps of combustion 

in the presence of a cross-
flow	


Parallelization 
within epochs and 
serialization across 
epochs adds 
greater flexibility.	


Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11 



11	


Parallel Information-Theoretic Analysis	


Objective	

-Decide what data are the most essential for 
analysis 	


-Minimize the information losses and maximize the 
quality of analysis	


-Steer the analysis of data based on information 
saliency	


Information-theoretic approach	

-Quantify Information content based on Shannon’s 
entropy	


-Use this model to design new analysis data 
structures and algorithms	


Collaboration with the Ohio State University and New York University Polytechnic Institute 
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Shannon’s Entropy 	

The average amount of information 
expressed by the random variable is	
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Parallel Topological Analysis	


- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	


Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	


Collaboration with SCI Institute, University of Utah 

Example of computing discrete gradient and Morse-Smale Complex	


1	
 2	


3	
 4	


Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12 



Performance and Scalability	


13	

Information entropy	
 Topological analysis	
 Particle tracing	




Summary	
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Successes	


-Supports numerous, diverse analysis 
techniques	

-Enables serial algorithms to be parallelized	

-Flexible combination of data movements	

-Both postprocessing and in situ	

-Efficient and scalable	


Limitations	


-Requires effort on the part of the user	

-Needs a program and (expert?) 
programmer	


Ongoing	


Finish installing existing code for swap-based reduction	

AMR, unstructured, particle decomposition	

Hybrid parallelism?	


Main ideas	


-Scalable analysis is about moving, transforming, reducing, analyzing, storing data	

-Scientists, researchers take ownership of their own analysis	
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