

Scalable Parallel Building Blocks for Custom Data Analysis

Tom Peterka, Rob Ross (ANL) Attila Gyulassy, Valerio Pascucci (SCI) Wes Kendall (UTK) Han-Wei Shen, Teng-Yok Lee, Abon Chaudhuri (OSU)

Morse-Smale Complex of combustion in the presence of a cross flow

Tom Peterka

tpeterka@mcs.anl.gov

LDAV'II Symposium 10/24/11 **Symposium 10/24/11** and Computer Science Division

Survey of Science and Analysis Applications

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics

Morse-Smale complex of hydrodynamics and combustion

-No two analyses are alike

-Analysis at scale is data-movement bound

-Data movement operations are common among different analyses

Executive Summary

DIY helps the user parallelize their analysis algorithm with data movement tools.

High-level motivations and assumptions

-Large-scale analysis (visual and numerical) in parallel on distributed-memory HPC machines

-Scientists, visualization researchers, tool builders

-In situ, coprocessing, postprocessing -Parallelizing from scratch is arduous -Scalable data movement is key -The user is the expert and may already have serial code for the analysis.

A common set of operations can be identified and encoded in a library -Decompose the domain -Assign subdomains to processors -Access data and store results -Combine local and global operations -Balance load, minimize communication -Overlap communication with computation -Scale efficiently

Benefits

-Researchers can focus on their own work, not on building parallel infrastructure

- -Analysis applications can be custom
- -Reuse core components and algorithms for performance and programmer productivity

DIY Structure

Features

Parallel I/O to/from storage

-MPI-IO, BIL

Domain decomposition

-Decompose domain

-Describe existing decomposition

Network communication

-Global reduction (2 flavors)

-Local nearest neighbor

Library structure

Written in C++

C bindings

Future Fortran bindings

DIY usage and library organization

Data Model

Features

-All input data and output analysis data is represented as MPI data types

-MPI data types can represent any C/C++/Fortran language structure

-User does not serialize / deserialize types prior to use

-Zero copy at application level saves time and space

-Custom MPI data types are an advanced topic

-DIY assists in MPI data type creation

C data structure DIY MPI data type

struct Particle { float[4] pt; int steps; };

MPI_Datatype type; struct map_block_t map $[] = \{$ {MPI_FLOAT, OFST, 4, offsetof(struct Particle, pt), 1}, {MPI_INT, OFST, 1, offsetof(struct Particle, steps), 1}, }; DIY_Create_datatype(0, 2, map, &type);

I/O: Parallel Reading Data and Writing Analysis Results

Data input

- -Application-level two-phase I/O
- -Reads raw, netCDF, HDF5 (future)
- -Read requests sorted and aggregated into large contiguous accesses
- -Data redistributed to processes after reading
- -Single and multi block/file domains.

Analysis output

- -Binary
- -General header/data blocks
- -Footer with indices
- -Application assigns semantic value to DIY blocks
- -Compression

(PEO) PE₀ PE₀ آ
الأو PE **PE** PE $PE₂$ $PE₂$ PE₂ PE₂ PE 3 **PE 3** PE₃ PE 3

Read Block Pattern

Input algorithm

Returned Data

3 Communication Patterns

Example API Use

// initialize

int dim $= 3$; // number of dimensions in the problem int tot_blocks = 8 ; // total number of blocks int data_size[3] = $\{10, 10, 10\}$; // data size MPI_Init(&argc, &argv); // init MPI before DIY DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size, MPI COMM WORLD);

// decompose domain

int share face $= 0$; // whether adjoining blocks share the same face int ghost $= 0$; // besides sharing a face, whether additional layers of ghost cells are needed int ghost_dir = 0; // ghost cells apply to all or particular sides of a block int given[3] = $\{0, 0, 0\}$; // constraints on blocking (none) DIY Decompose(share face, ghost, ghost dir, given);

// read data

```
for (int i = 0; i < nblocks; i +) {
```

```
DIY_Block_starts_sizes(i, min, size);
```
DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));

}

DIY_Read_blocks_all();

Example API Continued

// your own local analysis

// merge results, in this example // could be any combination / repetition of the three communication patterns int rounds $= 2$; // two rounds of merging int kvalues[2] = $\{4, 2\}$; // k-way merging, eg 4-way followed by 2-way merge int nb_merged; // number of output merged blocks DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, &MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);

// write results DIY_Write_open_all(outfile); DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype); DIY_Write_close_all();

// terminate

DIY Finalize(); // finalize DIY before MPI MPI_Finalize();

Parallel Time-Varying Flow Analysis

Collaboration with the Ohio State University and University of Tennessee Knoxville

Approach

}

Parallel Information-Theoretic Analysis

Collaboration with the Ohio State University and New York University Polytechnic Institute

Objective

-Decide what data are the most essential for analysis

-Minimize the information losses and maximize the quality of analysis

-Steer the analysis of data based on information saliency

Information-theoretic approach

-Quantify Information content based on Shannon's entropy

-Use this model to design new analysis data structures and algorithms

Areas of high information entropy--turbulent regions in original data--are the interesting regions in simulating coolant flow in a nuclear reactor.

Section of information entropy field

Shannon's Entropy

The average amount of information expressed by the random variable is

$$
H(x) = -\sum_{i=1} p_i \log p_i
$$

Parallel Topological Analysis

Collaboration with SCI Institute, University of Utah

-Transform discrete scalar field into Morse-Smale complex -Nodes are minima, maxima, saddle points of scalar values -Arcs represent constant-sign gradient flow -Used to quickly see topological structure

Two levels of simplification of the Morse-Smale complex for jet mixture fraction.

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS '12

Performance and Scalability

Summary

Main ideas

-Scalable analysis is about moving, transforming, reducing, analyzing, storing data -Scientists, researchers take ownership of their own analysis

Successes

-Supports numerous, diverse analysis techniques

-Enables serial algorithms to be parallelized

-Flexible combination of data movements

-Both postprocessing and in situ

-Efficient and scalable

Limitations

-Requires effort on the part of the user -Needs a program and (expert?) programmer

Ongoing

Finish installing existing code for swap-based reduction AMR, unstructured, particle decomposition Hybrid parallelism?

"The purpose of computing is insight, not numbers."

–Richard Hamming, 1962

Acknowledgments:

Facilities Argonne Leadership Computing Facility (ALCF) Oak Ridge National Center for Computational Sciences (NCCS)

> Funding DOE SciDAC UltraVis Institute DOE SDMAV Exascale Initiative ANL LDRD

https://svn.mcs.anl.gov/repos/diy/trunk

Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

LDAV'11 Symposium 10/24/11