

Analysis of Large-Scale Scalar Data Using Hixels

Joshua A. Levine², in collaboration with

D. Thompson¹, J.C. Bennett¹, P.-T. Bremer³, A. Gyulassy¹, P.P. Pébay⁴, V. Pascucci¹

 $2 \binom{3}{\text{National}}$ 3 **4** Lawrence Livermore $4 \times$ **Kitware**

HPC Has Lead to Increases in Both Data Size and Complexity

• "Hero" runs

- Increased spatial resolution
- Increased number of variables
- Uncertainty Quantification (UQ)
	- Ensembles of runs
	- Polynomial Chaos
	- Stochastic Simulations
- Many analysis methods do not scale with size & complexity of the data

Images courtesy of: National Energy Research Scientific Computing Center, Los Alamos National Laboratory, Argonne National Laboratory, and Oak Ridge Leadership Computing Facility.

Hixels: A Unified Data Representation

- A **hixel** is a point with an associated histogram of scalar values
- Hixel samples may represent:
	- Spatial down-sampling
	- Ensemble values
	- Random variables
- Trade data size/complexity for uncertainty *f*

1D Example of Hixels (Block Compression)

Kitware

Motivation: Feature-Based Analysis

- Characterize and define features
- Segmentation domain by function behavior
- Answer questions:
	- How many features are there?
	- What is the behavior of other variables within these features?
	- How do you define a good threshold value on which to segment the domain?

Data courtesy of: Dr. Jacqueline Chen, SNL

Goal: Extend Topological Methods

- What structures are present?
- How persistent are they?
- How do we visualize features?
- Our Contributions:
	- 1. Sampled topology
	- 2. Topological analysis of statistically associated buckets
	- 3. Visualizing fuzzy isosurfaces

Sampled Topology: Algorithm

- 1. Sample the hixels to construct a scalar field V_i
- 2. Compute the Morse complex for V_i
	- a) Identify basins around minima & arcs between adjacent basins
	- b) Encode arc locations in a binary field C_i
		- Boundaries $= 1$, Rest $= 0$
- 3. Construct aggregate A as mean of the C_i 's
- 4. Visualize variability of arc locations

Assumption: hixels are independent

Aggregate Segmentation on Temporal Jet

Lawrence Livermore

Convergence of Sampled Topology

Topological convergence for 8x8 blocks

Varying Block Size & Persistence

Topological Analysis of Statistically Associated Buckets: Algorithm

- Aimed at recovering prominent features from ensemble data
	- Exploit dependencies between runs
	- Identify regions in space & scalar values consistent with positive association
	- Perform topological segmentation on these regions individually
- 1. Compute buckets
- 2. Compute contingency statistics
- 3. Identify sheets
- 4. Perform topological analysis on individual sheets

Computing Buckets

- Values of high probability associated with peaks in the histogram
- Identify peaks + range of function values around that peak
- Topological segmentation on histogram
	- Use areal (hypervolume) persistence

Lawrence Livermore

• Weight of interval = area of the histogram

Kitware

• Merge until the probability of smallest bucket is above a particular threshold

Persistence Pairs

Effect of Persistence on Bucket Count

Persistence Threshold (p)

Number of Buckets Number of Buckets

Contingency Tables on Bucketed Hixels

Pointwise Mutual Information (PMI) Encodes Association Between Hixels

$$
p\,\mathrm{mi}(x,\,y) := \log\left(\frac{p_{(x,\,y)}}{p_x\,(x,\,y)}\right)
$$

 $pmi(x,y)=0 \Rightarrow x$ independent y

Goal: Identify buckets that cooccur more frequently than if statistically independent

Positive PMI Constructs Sheets of Statistically Associated Buckets

Before: Bucketed Hixels

Positive PMI Constructs Sheets of Statistically Associated Buckets

After: Sheets Connecting Buckets

An Ensemble of Mixed Distributions

- 512 x 512 hixels, 128 bins each
- 3200 samples from Poisson distribution
	- λ is a 100 at 5 source points in a circle
	- λ decreases to 12 ∞ distance from source points
- 9600 samples from a Gaussian distribution
	- μ & σ are min & max at 4 points in a circle
	- μ & σ vary μ distance from source points

Mean Poisson Surface

Mean Gaussian Surface

Mean Surface (Yellow) for Combined Samples

An Ensemble of Mixed Distributions

Mean Poisson Surface

Mean Gaussian Surface

"Simple" Topological Tests Fail!

- Probability that each hixel corresponds to
	- Minimum $\sim 20\%$
	- Maximum $\sim 20\%$
	- Saddle \sim 7%
	- Regular point ~ 53%

Sheets Isolate Prominent Features

Basins of Minima

Basins of Minima

Sheets for Lifted Ethylene Jet

Visualizing Fuzzy Isosurfaces: Algorithm

1. Compute likelihood function *g*

 $\sqrt{ }$

2. Volume render
$$
g
$$

• Provides a fuzzy description of the likelihood of where an isosurface exists

$$
g = \begin{cases} a, & b = 0 \\ -b, & a = 0 \\ \frac{a}{b} - \frac{b}{a}, & \text{otherwise} \end{cases}
$$

Comparison to Downsampling

Kitware

Fuzzy Isosurface of Temporal Jet

Likelihood that isovalue $\kappa = 0.506$ passes through a hixel

Conclusions and Summary

- Unified representations of large scalar fields from various modalities
- 3 proof of concept applications
	- Sampled topology
	- Topological analysis of statistically associated buckets
	- Visualizing fuzzy isosurfaces

Future Work

- Larger ensembles/larger data
- Performance/scaling
- Infer sheets from multivariate hixels
- **Issues to study**
	- What is preserved by hixels vs. resolution loss
	- Identify appropriate number of bins/hixel
	- Persistence thresholds for bucketing algorithm
	- Balance data storage vs. feature preservation
	- What topological features can/cannot be preserved by hixelation

Acknowledgement

Contact: Joshua A. Levine jlevine@sci.utah.edu

This work was supported by the Department of Energy Office of Advanced Scientific Computing Research, award number DE-SC0001922. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was also performed under the auspices of the US Department of Energy (DOE) by the Lawrence Livermore National Laboratory under contract nos. DE-AC52-07NA27344, LLNL-JRNL-412904L and by the University of Utah under contract DE-FC02-06ER25781. We are grateful to Dr. Jacqueline Chen for the combustion data sets and M. Eduard Göller, Georg Glaeser, and Johannes Kastner for the stag beetle dataset.

