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HPC Has Lead to Increases in 

Both Data Size and Complexity 

• “Hero” runs  

• Increased spatial resolution 

• Increased number of variables 

• Uncertainty Quantification (UQ)  

• Ensembles of runs 

• Polynomial Chaos 

• Stochastic Simulations 
 

• Many analysis methods do not scale 

with size & complexity of the data 

 

 

Images courtesy of: National Energy Research Scientific Computing Center, Los 

Alamos National Laboratory, Argonne National Laboratory, and Oak Ridge 

Leadership Computing Facility. 



Hixels: A Unified Data Representation 

• A hixel is a point with an associated 

histogram of scalar values 

• Hixel samples may represent:  

• Spatial down-sampling 

• Ensemble values 

• Random variables 

• Trade data size/complexity for 

uncertainty 
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1D Example of Hixels (Block Compression) 



Motivation: Feature-Based Analysis 

• Characterize and define features  

• Segmentation domain by function behavior 

• Answer questions: 

• How many features are there? 

• What is the behavior of other variables within 

these features? 

• How do you define a good threshold value on 

which to segment the domain? 

Data courtesy of: Dr. Jacqueline Chen, SNL 



Goal: Extend Topological Methods 

• What structures are present?  

• How persistent are they? 

• How do we visualize features? 

 

• Our Contributions: 

1. Sampled topology  

2. Topological analysis of statistically 

associated buckets 

3. Visualizing fuzzy isosurfaces 

 

 



Sampled Topology: Algorithm 

1. Sample the hixels to construct a scalar field Vi 

2. Compute the Morse complex for Vi 

a) Identify basins around minima & arcs between 

adjacent basins 

b) Encode arc locations in a binary field Ci 

• Boundaries = 1, Rest = 0 

3. Construct aggregate A as mean of the Ci’s 

4. Visualize variability of arc locations 

 Assumption: hixels are independent 



Aggregate Segmentation on Temporal Jet 

1 run 16 runs 64 runs 256 runs 16384 runs 
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Convergence of Sampled Topology 



Varying Block Size & Persistence 
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Topological Analysis of Statistically 

Associated Buckets: Algorithm 

• Aimed at recovering prominent features from ensemble data 

• Exploit dependencies between runs 

• Identify regions in space & scalar values consistent with positive association 

• Perform topological segmentation on these regions individually 

1. Compute buckets 

2. Compute contingency statistics 

3. Identify sheets 

4. Perform topological analysis on individual sheets 

 

 



Computing Buckets 

• Values of high probability associated 

with peaks in the histogram 

• Identify peaks + range of function values 

around that peak 

• Topological segmentation on histogram 

• Use areal (hypervolume) persistence 

• Weight of interval = area of the histogram 

• Merge until the probability of smallest bucket 

is above a particular threshold 
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Persistence Simplification of Buckets 

Persistence Pairs 



Persistence Simplification of Buckets 



Persistence Simplification of Buckets 



Persistence Simplification of Buckets 



Effect of Persistence on Bucket Count 

p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 
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Persistence Threshold (p) 



Contingency Tables on Bucketed Hixels 
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Pointwise Mutual Information (PMI) 

Encodes Association Between Hixels 
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Goal: Identify buckets that co-

occur more frequently than if 

statistically independent 

pmi(x,y)=0 => x independent y 
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Positive PMI Constructs Sheets of 

Statistically Associated Buckets 

Before: Bucketed Hixels 



Positive PMI Constructs Sheets of 

Statistically Associated Buckets 

After: Sheets Connecting Buckets 



An Ensemble of Mixed Distributions 

• 512 x 512 hixels, 128 bins each 

• 3200 samples from Poisson distribution 

• l is a 100 at 5 source points in a circle  

• l decreases to 12     distance from source points 

• 9600 samples from a Gaussian distribution 

• m & s are min & max at 4 points in a circle 

• m & s vary      distance from source points 


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Mean Poisson Surface 

Mean Gaussian Surface 



Mean Surface (Yellow) for Combined Samples 

An Ensemble of Mixed Distributions 

Mean Poisson Surface 

Mean Gaussian Surface 



“Simple” Topological Tests Fail! 

• Probability that each hixel corresponds to  

• Minimum ~ 20% 

• Maximum ~ 20%  

• Saddle ~ 7% 

• Regular point ~ 53% 
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Sheets Isolate Prominent Features 

Basins of Minima Basins of Maxima 



Sheets for Lifted Ethylene Jet 
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Visualizing Fuzzy Isosurfaces: Algorithm 

1. Compute likelihood function g 

 

 

 

 

2. Volume render g  

• Provides a fuzzy description of the 

likelihood of where an isosurface exists 
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Comparison to Downsampling 

Fuzzy iso 

Mean 

Lower left 

43 83 163 323 643 
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Fuzzy Isosurface of Temporal Jet 

 Likelihood that isovalue k = 0.506 passes through a hixel 

23 83 323 
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Conclusions and Summary 

• Unified representations of large scalar 

fields from various modalities 

• 3 proof of concept applications 

• Sampled topology 

• Topological analysis of statistically associated 

buckets 

• Visualizing fuzzy isosurfaces 
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Future Work 

• Larger ensembles/larger data 

• Performance/scaling 

• Infer sheets from multivariate hixels 

• Issues to study 
• What is preserved by hixels vs. resolution loss 

• Identify appropriate number of bins/hixel  

• Persistence thresholds for bucketing algorithm 

• Balance data storage vs. feature preservation 

• What topological features can/cannot be preserved by 

hixelation 
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