

Visualization of Multiscale, Multiphysics Simulation Data:

Brain Blood Flow

Joseph A. Insley,
Argonne National Laboratory
Leopold Grinberg,
Brown University
Michael E. Papka,
Argonne National Laboratory

LDAV 2011 October 24, 2011 Providence, Rhode Island

Complex Problem - Big Data

- Complex geometries from patient-specific MRI data
- ~450K spectral elements
- 350+ time steps
- 800 Million particles
- 32 Racks of BG/P (132K processors)
- SC11 Paper: Gordon Bell Finalist
 - L. Grinberg, V. Morozov, D. A. Fedosov, J. A. Insley, M. E. Papka, K. Kumar, and G. E. Karniadakis. A new computational paradigm in multi-scale simulations: Application to brain blood flow. In Proceedings of the 2011 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, Seattle, WA, 2011.

Macroscale Simulation (NekTar)

DOE INCITE Application

- NekTar: Spectral/hp element method (SEM)
 - Non-overlapping elements
 - Multi-patch approach
 - Domain decomposed into overlapping patches
- NekTar Data
 - -Saved in Modal space
 - Mesh (geometry)
 - -Solution data

NekTar-ParaView Coupling

- NekTar for parallel I/O and computation
- ParaView for parallel visualization and rendering

Processing High-order Spectral Elements

- Data computed with high-order spectral accuracy
 - Grid consistent with simulation resolution

Derived Quantity: Vorticity

NekTar solution more accurate

Processing High-order Spectral Elements

- Data computed with high-order spectral accuracy
 - Grid consistent with simulation resolution
- Linear strong scaling performance

Average Time Per Frame

Plug-in Controls

- Select variables
- Interactively set data resolution
 - No need to reread mesh data from disk
- Time varying data
 - Only new data read from disk, not geometry
- Data caching

Plug-in Controls

- Select variables
- Interactively set data resolution
 - No need to reread mesh data from disk
- Time varying data
 - Only new data read from disk, not geometry
- Data caching

Data Validation

- Multiple patches
 - Interfaces between patches
- Separately control resolution
 - More focus in regions of greater interest

Microscale Simulation (DPD-LAMMPS)

- Modified version of LAMMPS
- Two types of data
 - Atomistic (particle) data
 - Plasma
 - Red Blood Cells (RBC)
 - Platelets
 - Field data
 - Ensemble average solution
 - Window Proper Orthogonal Decomposition (WPOD)

Integrated Visualization

- Used for verification
 - Field data from NekTar and DPD-LAMMPS

Integrated Visualization

- Used for verification
 - Field data from NekTar and DPD-LAMMPS

Conclusions

- Multiscale will become increasingly important
 - Appropriate tools for visualization will be critical
- Work closely with scientists
 - Cyclical process learn from each other what is important and possible (and not possible)
- Co-processing a next step
 - Reduce I/O requirements
 - Leverage infrastructure
 - Shorten time to discovery

Additional Applications of NekTar

Air flow

Water flow

Heat transfer

Thanks

- George Karniadakis and Dmitry Fedosov, Brown University
- Visualization Group, Mathematics and Computer
 Science Division, Argonne National Laboratory
- This work was supported in part by the National Science Foundation Grants OCI-0504086 and OCI-0904190, and by the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.