

Parallel Visualization on Large Clusters Using MapReduce

Huy T. Vo Polytechnic Institute of New York University (NYU-Poly)

Jonathan Bronson (SCI Institute), Brian Summa (SCI Institute), Joao Comba (UFRGS, Brazil), Juliana Freire (NYU-Poly), Bill Howe (eScience Institute), Valerio Pascucci (SCI Institute), Claudio T. Silva (NYU-Poly)

Why Cloud?

- Multi-tenancy, cost-effective platform
- Simple programming model (MapReduce)
- Scalable computing
- Data-intensive
- Works great in the web and database community

Objectives

- Can we use cloud computing for Vis?
 - Efficiency
 - Scalability
 - LARGE DATA handling

Objectives

- Can we use cloud computing for Vis?
 - Efficiency
 - Scalability
 - LARGE DATA handling

Evaluation with 3 core visualization algorithms

Outline

- MapReduce and Hadoop overview
- Core visualization algorithms in MapReduce
 - Rendering, Isocontouring, Simplification
- Performance results
 - Hadoop baseline
 - Visualization algorithms

What is MapReduce?

- A lightweight parallel framework
 - Two data-parallel phases: Map & Reduce
- Fault-tolerance
- I/O Scheduling

MapReduce Programming Pipeline

INPUT: list of key-value pairs of (k1,v1)MAP: $(k1,v1) \rightarrow [list of (k2,v2)]$ SHUFFLE: combine $(k2,v2) \rightarrow (k2, [list of v2])$ REDUCE: $(k2, [list of v2]) \rightarrow [list of v3]$ OUTPUT: list of values v3

MapReduce Programming Pipeline

INPUT: list of key-value pairs of (k1,v1)MAP: $(k1,v1) \rightarrow [list of (k2,v2)]$ SHUFFLE: $(k2,v2) \rightarrow (k2, [list of v2])$ REDUCE: $(k2, [list of v2]) \rightarrow [list of v3]$ OUTPUT: list of values v3

Fixed pipeline

MapReduce Programming Model

INPUT: list of key-value pairs of (kl,vl)

MAP: (k1,v1) → [list of (k2,v2)]
SHUFFLE: (k2,v2) → (k2, [list of v2])
REDUCE: (k2, [list of v2]) → [list of v3]
OUTPUT: list of values v3

User-defined and run in parallel

Hadoop is MapReduce + HDFS

- MapReduce implementation from Yahoo
- With its own distributed filesystem (HDFS)
- Java-based but support C++ map and reduce functions
 - Can incorporate C++ libraries

Hadoop Architecture

Visualization Algorithms with MapReduce

- Surface and volume rendering
- Regular grids isosurface extraction
- Triangular mesh simplification
- Can be chained together
- LARGE DATA!

Rendering: Rasterization vs. Ray Tracing

- Rasterization!
- Hadoop platform → graphics card (MapReduce pipeline → graphics pipeline)
 - Mapper: rasterizer and geometry shader
 - Reducer: fragment shader and composition
- Full pipeline control → rendering effects

MapReduce Surface Rendering

INPUT: kI=N/A, vI=triangle vertices

MAP: k2=pixel location, v2=(depth, color)

REDUCE: v3=composited pixel color

OUTPUT: pixel colors

I GigaPixel of I Billion Tris

MapReduce Volume Rendering

Decompose primitives into triangles MAP: v2=(depth, scalar) REDUCE: perform integration and color lookup before composition

27 Billion Voxels Rendering

MapReduce Isosurface Extraction

Marching Cube on regular grids INPUT: kI = slice index, v2=slice grid points MAP: k2=iso-value,v2=extracted triangles REDUCE: k3=k2, v3=combined triangles

DAV 2011

Isosurface + Rendering

MapReduce Surface Simplification

- Vertex clustering [Lindstrom and Silva 01]
- Clustering and re-building triangles both require data shuffling → 2 MR Jobs
- JOBI: bins vertices into regular grid and compute representative vertex locations
- JOB2: Creating representative triangles

Simplification of St. Matthew

8x8x8

5|2x5|2x5|2

Performance Results

- Hadoop baseline
 - A shared CLuE cluster, shared 768 cores
 - A private cluster: 60 nodes, 240 cores
- Visualization algorithms
 - Only on private cluster machines

Hadoop Baseline

WEAK-SCALING OF DATASIZEVS. THE NUMBER OF TASKS (on Cluster)

Datasize	#Maps	#Reduces	Map M Time	Shuffle apShuff Time	Reduce le_Reduc Time	e Total e lotal Time	I/O Rate	Data Rate
IGB	16	I	7s	I 8s	e inte 27s	63s	84 MB/s	I6 MB/s
2GB	32	2	8s	l 8s	27s	66s	161 MB/s	31 MB/s
4GB	64	4	9s	24s	30s	75s	283 MB/s	55 MB/s
8GB	128	8	10s	26s	29s	78s	545 MB/s	105 MB/s
I6GB	256	16	10s	32s	29s	90s	944 MB/s	182 MB/s
32GB	512	32	l2s	56s	32s	130s	1308 MB/s	252 MB/s
64GB	1024	64	lls	69s	30s	153s	2222 MB/s	428 MB/s
I 28GB	2048	128	13s	146s	57s	320s	2125 MB/s	410 MB/s

- High latency/overhead (30s)
- High I/O cost (>5x data size)
- Scale well with data-size

WEAK-SCALING (on CLuE)

	Total		
Datasize	Time	I/O Rate	Data Rate
IGB	971s	5 MB/s	I MB/s
2GB	946s	II MB/s	2 MB/s
4GB	986s	22 MB/s	4 MB/s
8GB	976s	44 MB/s	8 MB/s
I6GB	1059s	80 MB/s	15 MB/s

Heavy I/O during Shuffling

Hadoop Task Split

Surface Rendering

	WEAK SCALING (RESOLUTION)										
	_	St. MATTHI	EW (13 GB)		ATLAS (18	GB)				
Resolution	#M/R	CLuE	Cluster	File	#M/R	CLuE	Cluster	File			
		time	time	Written		time	time	Written			
I.5 MP	256/256	l min 54s	46s	33MB	273/273	l min 55s	46s	41MB			
6 MP	256/256	l min 42s	46s	I 47MB	273/273	2min 11s	46s	I04MB			
25 MP	256/256	l min 47s	46s	583MB	273/273	2min 12s	46s	412MB			
100 MP	256/256	l min 40s	46s	2.3GB	273/273	2min 12s	46s	I.6GB			
400 MP	256/256	2min 04s	46s	10.9GB	273/273	2min 27s	47s	5.5GB			
I.6 GP	256/256	3min 12s	l min08s	53.14GB	273/273	3min 55s	55s	37.8GB			
6.4 GP	256/256	9min 50s	2min55s	213GB	273/273	10min 30s	l min58s	151.8GB			

WEAK SCALING (RESOLUTION AND REDUCE)

		St. MATTH	EW (13 GB)		ATLAS (18	GB)	
Resolution	CLuE	256M	Cluster	480M	CLuE	256M	Cluster	480M
	#R	time	#R	time	#R	time	#R	time
I.5 MP	4	1 min 13s	8	46s	4	Imin 18s	8	46s
6 MP	8	Imin 18s	15	46s	8	Imin 19s	15	45s
25 MP	16	Imin 18s	30	46s	16	Imin 51s	30	46s
100 MP	32	2min 04s	60	47s	32	I min 52s	60	47s
400 MP	64	2min 04s	120	49s	64	2min 34s	120	46s
I.6 GP	128	4min 45s	240	l min06s	128	5min 06s	240	55s
6.4 GP	256	9min 50s	480	2min I 4s	256	10min 30s	480	l min4l s

DAVID (I Billion Triangles, 30GB)

	I.5 MP	6 MP	25 MP	100 MP	400 MP	I.6 GP	6.4 GP
Time	59s	59s	59s	59s	lm ls	lm 40s	lm 47s

Surface Rendering

	WEAK SCALING (RESOLUTION)										
		St. MATTHI		ATLAS (18	GB)						
Resolution	#M/R	CLuE	Cluster	File	#M/R	CLuE	Cluster	File			
		time	time	Written		time	time	Written			
I.5 MP	256/256	l min 54s	46s	33MB	273/273	l min 55s	46s	41MB			
6 MP	256/256	l min 42s	46s	I 47MB	273/273	2min 11s	46s	I04MB			
25 MP	256/256	l min 47s	46s	583MB	273/273	2min 12s	46s	412MB			
100 MP	256/256	I min 40s	46s	2.3GB	273/273	2min 12s	46s	I.6GB			
400 MP	256/256	2min 04s	46s	10.9GB	273/273	2min 27s	47s	5.5GB			
I.6 GP	256/256	3min 12s	l min08s	53.14GB	273/273	3min 55s	55s	37.8GB			
6.4 GP	256/256	9min 50s	2min55s	213GB	273/273	10min 30s	l min58s	151.8GB			

WEAK SCALING (RESOLUTION AND REDUCE)

		St. MATTH	EW (13 GB)		ATLAS (18	GB)			
Resolution	CLuE	256M	Cluster	480M	CLuE	256M	Cluster	480M		
	#R	time	#R	time	#R	time	#R	time		
I.5 MP	4	1 min 13s	8	46s	4	Imin 18s	8	46s		
6 MP	8	Imin 18s	15	46 s	8	Imin 19s	15	45s		
25 MP	16	Imin 18s	30	46 s	16	lmin 51s	30	46s		
100 MP	32	2min 04s	60	47s	32	I min 52s	60	47s		
400 MP	64	2min 04s	120	49s	64	2min 34s	120	46s		
I.6 GP	128	4min 45s	240	l min06s	128	5min 06s	240	55s		
6.4 GP	256	9min 50s	480	2min I 4s	256	10min 30s	480	l min4l s		
		D	AVID (I B	illion Triang	gles, 30GB)				20 h	
	I.5 MP	6 MP	25 MP	100 MP	400 MP	I.6 GP	6.4 GP	→ vs.	501	iuui
Time	59s	59s	59s	59s	lm ls	Im 40s	1m 47s	∏Ize	e et d	11. 1 .

Volume Rendering

TETRAHEDRAL MESH VOLUME RENDERING (on Cluster)

Model	#Tetrahedra	#Triangles	Time	#Fragments	Read	Write
Spx	0.8 millions	I.6 millions	3m 29s	9.8 billions	320 GB	473 GB
Fighter	I.4 millions	2.8 millions	2m 20s	5.3 billions	172 GB	254 GB
Sfl	I4 millions	28 millions	6m 53s	16.8 billions	545 GB	807 GB
Bullet	36 millions	73 millions	4m19s	12.7 billions	412 GB	610 GB
	STRUCTUR	ed grid vc	UME RE	NDERING (on Cluster	·)
Model	Grid Size	#Triangles	Time	#Fragments	Read	Write

Model	Grid Size	#Triangles	Time	#Fragments	Read	Write
RT27	3072 ³ floats	161 billions	19m 20s	22.2 billions	I.2 TB	I.6 TB

Volume Rendering

TETRAHEDRAL MESH VOLUME RENDERING (on Cluster)

Model	#Tetrahedra	#Triangles	Time	#Fragments	Read	Write
Spx	0.8 millions	I.6 millions	3m 29s	9.8 billions	320 GB	473 GB
Fighter	I.4 millions	2.8 millions	2m 20s	5.3 billions	172 GB	254 GB
Sfl	I4 millions	28 millions	6m 53s	16.8 billions	545 GB	807 GB
Bullet	36 millions	73 millions	4m19s	12.7 billions	412 GB	610 GB

STRUCTURED GRID VOLUME RENDERING (on Cluster)

Model	Grid Size	#Triangles	Time	#Fragments	Read	Write
RT27	3072 ³ floats	161 billions	19m 20s	22.2 billions	I.2 TB	I.6 TB

vs. 22 seconds on 1728 cores [Howison et al. 10]

Isosurfacing

	Richtmyer-Mesl	nkov (7.6GB)	Rayleigh-Taylor (108GB)			
#150	Total Time	Written	Total Time	Written		
I	30s	I.78GB	39s	8.4GB		
2	3 s	5.9GB	39s	II.IGB		
4	45s	22.5GB	lm 5s	62.0GB		
8	45s	52.7GB	lm 25s	I 55.9GB		
16	Im 26s	112.4GB	2m 50s	336.6GB		

Isosurfacing

#lso	Richtmyer-Mesh	nkov (7.6GB)	Rayleigh-Taylor (108GB)					
	Total Time	Written	Tot	Total Time		Written		
	30s	I.78GB		39s		8.4GB		
2	3 s	5.9GB		395		II.IGB		
4	45s	22.5GB		lm 5s	N	62.0GB		
8	45s	52.7GB		lm 25s		I 55.9GB		
16	Im 26s	112.4GB		2m 50s	\square	336.6GB		
		vs. 250 seconds on						
	64 cores by							
				[Isenburg et al. 10]				

Simplification

St MATTHEW (13 GB)					ATLAS (18 GB)					
Size	CLuETime		Cluster Time		Output	CLuETime		Cluster Time		Output
	Job I	Job 2	Job I	Job 2	Size	Job I	Job 2	Job I	Job 2	Size
8 ³	5m 45s	52s	58s	56s	22 KB	5m 45s	52s	54s	55s	23 KB
I6 ³	3m 54s	49s	58s	55s	98 KB	3m 54s	49s	54s	54s	105 KB
32 ³	3m 51s	49s	55s	54s	392 KB	3m 51s	49s	5ls	52s	450 KB
64 ³	3m 40s	49s	57s	54s	I.6 MB	3m 40s	49s	55s	55s	1.9 MB
I 28 ³	4m 12s	49s	55s	58s	6.4 MB	4m 12s	49s	52s	52s	7.5 MB
256 ³	3m 50s	49s	55s	55s	26 MB	3m 50s	49s	55s	55s	30 MB

Simplification

St MATTHEW (13 GB)					ATLAS (18 GB)					
Size	CLuE Time		Cluster Time		Output	CLuE Time		Cluster Time		Output
	Job I	Job 2	Job I	Job 2	Size	Job I	Job 2	Job I	Job 2	Size
8 ³	5m 45s	52s	58s	56s	22 KB	5m 45s	52s	54s	55s	23 KB
16 ³	3m 54s	49s	58s	55s	98 KB	3m 54s	49s	54s	54s	105 KB
32 ³	3m 51s	49s	55s	54s	392 KB	3m 51s	49s	5ls	52s	450 KB
64 ³	3m 40s	49s	57s	54s	I.6 MB	3m 40s	49s	55s	55s	1.9 MB
I 28 ³	4m 12s	49s	55s	58s	6.4 MB	4m 12s	49s	52s	52s	7.5 MB
256 ³	3m 50s	49s	55s	55s	26 MB	3m 50s	49s	55s	55s	30 MB

Job 2 operates on decimated vertices \rightarrow much faster

Hadoop Lessons

- Scale well where data-parallelism fits
- Performance is sensitive to intermediate data size
- Easy to use, but hard to configure
- Lack the ability for chaining jobs
- Data upload cannot be done in parallel

Objectives

- Can we use cloud computing for Vis?
 - Efficiency
 - Scalability
 - LARGE DATA handling

Conclusions

- Visualization can operate on the cloud!
 - Efficiency: high overhead but comparable performance (for data-parallelism)
 - Scalability: limit by intermediate data size
- Capable of visualizing LARGE DATA if
 - Interactivity is not required
 - Techniques can be data-parallelized

Future Work

- Try other MapReduce implementations
 - MapReduce-MPI, Cascading, Piccolo
- Try other programming paradigms
 - DryadLINQ, Sector/Sphere
- Using structured data storage (DBs) back-ends

Acknowledgements

• NSF, DoE, IBM, NVIDIA

This work was supported in part by the National Science Foundation (CCF-08560,CCF-0702817, CNS-0751152, CNS-1153503, IIS-0844572, IIS-0904631, IIS-0906379, IIS-1153728, and NIH ITKv4), the Department of Energy, CNPq (processes 200498/2010-0, 569239/2008-7, and 491034/2008-3), IBM Faculty Awards and NVIDIA Fellowships. This work was also performed under the auspices of the U.S. Department of Energy by the University of Utah under contract DE-SC0001922 and DE-FC02-06ER25781 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, LLNL-JRNL-453051.

 Datasets: Stanford Graphics Lab, Marc Levoy (the new David scan model), Bill Cabot, Andy Cook and Paul Miller at LLNL (the Rayleigh-Taylor dataset)

Question?

Thank you!

