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Introduction	


•  Many scientific applications produce large outputs	

– For example, GTC generates 260 GB data per 120 sec	

– But, a relatively small fraction of the data is 

interesting, e.g., blobs and clumps in fusion, magnetic 
nulls in magnetohydrodynamic models	


•  Challenge:	

– Accessing data on disk is slow	

– Disk is getting slower relative to computing power	


•  We explore performance impact on parallelism 
and in situ indexing for large data	
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ADIOS	

•  Adaptable IO Systems developed by ORNL	


– Proven read/write performance	

– Widely adopted as a middleware for data-intensive 

scientific computing	


•  Provides good architectural merits for “in situ” 
processing	

– By decoupling compute nodes with staging nodes	

– Staging nodes take full charges of writing data	


•  Examples	

– Statistics computation when data is generated	


•  Min, max, average, standard deviation	
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Data Staging	


•  Why asynchronous I/O?	

•  Eliminates performance linkage���

between I/O subsystem and���
application	


•  Decouples file system performance���
variations and limitations from���
application run time	


•  Enables optimizations based on���
dynamic number of writers	


•  High bandwidth data extraction from application	


•  Scalable data movement with shared resources requires us to 
manage the transfers	


•  Scheduling properly can greatly reduce the impact of I/O	
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In Situ Processing	

q  The cost of data movement, 

both from the application to 
storage and from storage to 
analysis or visualization, is a 
deterrent to effective use of 
the data	


q  The output costs increase the 
overall application running time 
and often forces the user to 
reduce the total volume of data 
being produced by outputting 
data less frequently	


q  Input costs, especially to 
visualization, can make up to 
80% of the total run time	


q  Solution: perform analysis  
operations in situ or in place	


FastQuery Challenges & Approaches	

(1)  Mismatch between the array model used by scientific 

data and the relational model when applying database 
indexing technology	


§  Map array data to relational table structure on-the-fly	


(2)  Arbitrary hierarchical data layout	

§  Deploy a flexible yet simple variable naming scheme 

based on regular expression	


(3)  Diverse scientific data format	

§  Define a unified array I/O interface	


(4)  High index building cost	

§  Parallel I/O strategy and system design to reduce the 

index building time	
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Mapping between FastBit & Array Data	


•  Each variable associated with a query is mapped to a 
column of a relational table on-the-fly	


•  Elements of a multidimensional array are linearized	


•  An arbitrary number of arrays or subarrays can be placed 
into a logical table as long as they have the same array 
dimensions	


•  Ex: getNumHits(“x[0:2,0:2] > 3 && y[2:4,2:4]>3”)	

–  NumHits=1	

–  Coordinates={0,1}	
 RID X Y 

0 0 3 
1 4 8 
2 1 0 
3 3 0 

0	   4	   0	   1	  
1	   3	   1	   2	  
1	   1	   8	   0	  

/ 

X Y 
0	   0	   3	  
0	   0	   0	  
7	   1	   3	  

1	  
2	  
8	  

0	   0	   0	   0	  3x4	  
4x4	  
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Array view 

FastBit	  view
	  

Flexible Naming Schema	

•  Naïve option: use the full path	


–  getNumHits(“/test/space/test2/temperature > 100”)	


•  Can we do better?	

–  getNumHits(“x > 3”)	


/ 

test 

x 

time0 

exp 

time1 time2 

z y x z y x y x 

time0 

z y test1 

space 

test2 

energy temperature a c b 
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Flexible Naming Schema	

•  Separate variable name and path	


–  Implemented with a tuple (varName, varPath)	

–  Variable is identified by the rule “*/varPath/*/varName”	


•  Example:	

–  (“temperature > 100”, “”) è “/test/space/test2/temperature > 100”	

–  (“x > 3”, test) è “/test/time0/x > 3”	

–  (“x > 3”, time1) è “/exp/time1/x > 3”	


•  Advantage:	

–  Simplify query string	

–  Decouple user specification from file layout	


/ 

test 

x 

time0 

exp 

time1 time2 

z y x z y x y x 

time0 

z y test1 

space 

test2 

energy temperature a c b 
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FastQuery System Architecture	

FastQuery API	


Array I/O interface	


Parser (Naming & Query schema)	


Index Builder	
Query Processor	


Variable table	


...	


HDF5	
 NetCDF	
 ADIOS	
 ......	

Data formats	


Indexing &
 Q

uery	

Technique	

(FastBit)	


read data/load index	
 write index	


var0	
 index	
data	

var1	
 index	
data	


var100	
 index	
data	


HDF5 Driver	
 NetCDF Driver	
 ADIOS Driver	
...	
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Basic Bitmap Index	

•  First commercial version	


–  Model 204, P. O’Neil, 1987	

•  Easy to build: faster than building B-trees	

•  Efficient for querying: only bitwise logical 

operations	

–  A < 2 à b0 OR b1	

–  A > 2 à b3 OR b4 OR b5	


•  Efficient for multi-dimensional queries	

–  Use bitwise operations to combine 

the partial results	

•  Size: one bit per distinct value per row	


–  Definition: Cardinality == number of 
distinct values	


–  Compact for low cardinality attributes, 
say, cardinality < 100	


–  Worst case: cardinality = N, number of 
rows; index size: N*N bits	


A < 2	
 2 < A	


Data	

values	


0	

1	

5	

3	

1	

2	

0	

4	

1	


1	

0	

0	

0	

0	

0	

1	

0	

0	


0	

1	

0	

0	

1	

0	

0	

0	

1	


0	

0	

0	

0	

0	

1	

0	

0	

0	


0	

0	

0	

1	

0	

0	

0	

0	

0	


0	

0	

0	

0	

0	

0	

0	

1	

0	


0	

0	

1	

0	

0	

0	

0	

0	

0	


=0	
 =1	
 =2	
 =3	
 =4	
 =5	

b0	
 b1	
 b2	
 b3	
 b4	
 b5	
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FastBit Compression	


10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111	


Example: 2015 bits	


Main Idea: Use run-length-encoding, but...	

partition bits into 31-bit groups [not 32 bit] on 32-bit machines	


31 bits	
 31 bits	
(62 groups skipped) …	
31 bits	


•  Name: Word-Aligned Hybrid (WAH) code (US patent)	

•  Key features: WAH is compute-efficient	


Ø Uses the run-length encoding (simple)	

Ø Allows operations directly on compressed bitmaps	

Ø Never breaks any words into smaller pieces during operations	

Ø Worst case index size 4N words, not N*N (without compression)	


Encode each group using one 32-bit word	


31-bit count=63	


Merge neighboring groups with identical bits	


31 literal bits	
0	
 1	
 0	
 31 literal bits	
0	


32  bits	


[Wu, Otoo, and Shoshani 2006]	
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Multi-Dimensional Query Performance	


Ø  Queries 5 out of 12 
most popular variables 
from STAR (2.2 million 
records)	


Ø  Average attribute 
cardinality (distinct 
values): 222,000	


Ø  FastBit uses WAH 
compression	


Ø  DBMS uses BBC 
compression	


Ø  FastBit >10X faster than 
DBMS	


Ø  FastBit indexes are 30% 
of raw data sizes	


5-dimensional	

queries	


>10X faster	


Wu, Otoo andShoshani 2002	
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Experimental Evaluation	

q Impact of indexing	

q Parallel index building	

q In situ index building	


q Measurements collected on Franklin at NERSC	

² ~10000 nodes	

² 8 cores	

² 8 GB memory	

² Lustre file system	


q Test problem sizes	

² Small: 3.6GB	

² Medium: 27GB	

² Large: 208GB	

² Large2: 173GB	
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Hits	

(%)	


99%	


20%	


1%	


Why Indexing?	


•  Speed-up with indexing: 3x – 199x 	
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But challenges remain…	


q Solution:	

– Building indexes in parallel!	


•  Index construction 
time	

– 3 min/3.6GB	


– 23 min/27GB	

– 3 hr/208GB	

– > 12hr/1.7TB	
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Parallel Index Construction	


•  Split and assign data blocks to multiple processors	


The data is on 
disk system	


D1	
 D2	
 D3	
 Dn	


I1	
 I2	
 I3	
 In	
Index	
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Performance with Parallelism	


•  Parallelism improves performance, but	

•  Why the benefit disappears after a certain 

parallelism factor?	


Hopper2 @ LBNL	

•  ~6000 nodes	

•  24 cores	

•  32-64 GB 

memory	

•  Lustre file 

system	
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Index Construction Time Breakdown	


•  Write performance shows little improvement!	

•  Why? Collective writes à Sync overhead	
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Optimization: Delayed Writes	


•  Reduce number of synchronizations!	

–  Delaying writing index whenever possible	


–  Retain created indexes in memory, then write them together	
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Storage	

System	


Computer 
node 
cluster	


I/O staging node cluster	


Write data	


Write data	


In situ 
Work	


-  Statistics	

-  Indexing	


-  Visualization	


Cluster with Dedicated Staging Nodes	
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Periodic	

Data	

Generation	


T1, TN+1, ..	
 S1	


S2	


SN	


T2, TN+2, ..	


TN, T2N, ..	


Storage	

System	


I1, IN+1, ..	


I2, IN+2, ..	


IN, I2N, ..	


Compute Node	
 DART Server	


Staging Node	


Experiments for In Situ Indexing	


Split data by 
timestep	


Staging node builds 
index directly from 

the given data	
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Reading Time	


Small: 3.6GB	

Medium: 27GB	

Large: 208GB	

Large2: 173GB	


•  Getting data from another processor (in situ) is faster than getting 
data from disk	


Franklin @ LBNL	

•  ~10000 nodes	

•  8 cores	

•  8 GB memory	

•  Lustre file 

system	
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Summary	

•  Indexing dramatically reduces query time	


– But expensive with 12+ hours for 1 TB data	


•  Parallelism offers performance improvement for 
building index	

– But collective writes causes random delay	

– Delayed write optimization can mitigate the delay	


•  In situ indexing improves performance by 
significantly reducing data read time	
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Lessons Learned	

•  Avoiding synchronization	


– One delayed processor causes severe delay in writing	

–  It is fine to delay writing index blocks if the base data 

is safely stored already	


•  Choosing a moderate number of processors	

– Performance benefits are not linear!	

– Finding sweet spot may be interesting (maybe GLEAN 

could help)	


•  Tuning file system parameters	

– For example, striping count has direct performance 

impact to some extent	
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QUESTIONS?	


John Wu John.Wu@nersc.gov	

FastBit http://sdm.lbl.gov/fastbit/	


FastQuery http://portal.nersc.gov/svn/fq/	


ADIOS http://www.olcf.ornl.gov/center-projects/adios/	
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