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Introduction	



•  Many scientific applications produce large outputs	


– For example, GTC generates 260 GB data per 120 sec	


– But, a relatively small fraction of the data is 

interesting, e.g., blobs and clumps in fusion, magnetic 
nulls in magnetohydrodynamic models	



•  Challenge:	


– Accessing data on disk is slow	


– Disk is getting slower relative to computing power	



•  We explore performance impact on parallelism 
and in situ indexing for large data	
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ADIOS	


•  Adaptable IO Systems developed by ORNL	



– Proven read/write performance	


– Widely adopted as a middleware for data-intensive 

scientific computing	



•  Provides good architectural merits for “in situ” 
processing	


– By decoupling compute nodes with staging nodes	


– Staging nodes take full charges of writing data	



•  Examples	


– Statistics computation when data is generated	



•  Min, max, average, standard deviation	
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http://www.olcf.ornl.gov/center-projects/adios/	



Data Staging	



•  Why asynchronous I/O?	


•  Eliminates performance linkage���

between I/O subsystem and���
application	



•  Decouples file system performance���
variations and limitations from���
application run time	



•  Enables optimizations based on���
dynamic number of writers	



•  High bandwidth data extraction from application	



•  Scalable data movement with shared resources requires us to 
manage the transfers	



•  Scheduling properly can greatly reduce the impact of I/O	
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In Situ Processing	


q  The cost of data movement, 

both from the application to 
storage and from storage to 
analysis or visualization, is a 
deterrent to effective use of 
the data	



q  The output costs increase the 
overall application running time 
and often forces the user to 
reduce the total volume of data 
being produced by outputting 
data less frequently	



q  Input costs, especially to 
visualization, can make up to 
80% of the total run time	



q  Solution: perform analysis  
operations in situ or in place	



FastQuery Challenges & Approaches	


(1)  Mismatch between the array model used by scientific 

data and the relational model when applying database 
indexing technology	



§  Map array data to relational table structure on-the-fly	



(2)  Arbitrary hierarchical data layout	


§  Deploy a flexible yet simple variable naming scheme 

based on regular expression	



(3)  Diverse scientific data format	


§  Define a unified array I/O interface	



(4)  High index building cost	


§  Parallel I/O strategy and system design to reduce the 

index building time	



6	





FastQuery - LDAV	

 10/24/11	



4	



Mapping between FastBit & Array Data	



•  Each variable associated with a query is mapped to a 
column of a relational table on-the-fly	



•  Elements of a multidimensional array are linearized	



•  An arbitrary number of arrays or subarrays can be placed 
into a logical table as long as they have the same array 
dimensions	



•  Ex: getNumHits(“x[0:2,0:2] > 3 && y[2:4,2:4]>3”)	


–  NumHits=1	


–  Coordinates={0,1}	

 RID X Y 

0 0 3 
1 4 8 
2 1 0 
3 3 0 

0	
   4	
   0	
   1	
  
1	
   3	
   1	
   2	
  
1	
   1	
   8	
   0	
  

/ 

X Y 
0	
   0	
   3	
  
0	
   0	
   0	
  
7	
   1	
   3	
  

1	
  
2	
  
8	
  

0	
   0	
   0	
   0	
  3x4	
  
4x4	
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Array view 

FastBit	
  view
	
  

Flexible Naming Schema	


•  Naïve option: use the full path	



–  getNumHits(“/test/space/test2/temperature > 100”)	



•  Can we do better?	


–  getNumHits(“x > 3”)	



/ 

test 

x 

time0 

exp 

time1 time2 

z y x z y x y x 

time0 

z y test1 

space 

test2 

energy temperature a c b 
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Flexible Naming Schema	


•  Separate variable name and path	



–  Implemented with a tuple (varName, varPath)	


–  Variable is identified by the rule “*/varPath/*/varName”	



•  Example:	


–  (“temperature > 100”, “”) è “/test/space/test2/temperature > 100”	


–  (“x > 3”, test) è “/test/time0/x > 3”	


–  (“x > 3”, time1) è “/exp/time1/x > 3”	



•  Advantage:	


–  Simplify query string	


–  Decouple user specification from file layout	



/ 

test 

x 

time0 

exp 

time1 time2 

z y x z y x y x 

time0 

z y test1 

space 

test2 

energy temperature a c b 
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FastQuery System Architecture	


FastQuery API	



Array I/O interface	



Parser (Naming & Query schema)	



Index Builder	

Query Processor	



Variable table	



...	



HDF5	

 NetCDF	

 ADIOS	

 ......	


Data formats	



Indexing &
 Q

uery	


Technique	


(FastBit)	



read data/load index	

 write index	



var0	

 index	

data	


var1	

 index	

data	



var100	

 index	

data	



HDF5 Driver	

 NetCDF Driver	

 ADIOS Driver	

...	
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Basic Bitmap Index	


•  First commercial version	



–  Model 204, P. O’Neil, 1987	


•  Easy to build: faster than building B-trees	


•  Efficient for querying: only bitwise logical 

operations	


–  A < 2 à b0 OR b1	


–  A > 2 à b3 OR b4 OR b5	



•  Efficient for multi-dimensional queries	


–  Use bitwise operations to combine 

the partial results	


•  Size: one bit per distinct value per row	



–  Definition: Cardinality == number of 
distinct values	



–  Compact for low cardinality attributes, 
say, cardinality < 100	



–  Worst case: cardinality = N, number of 
rows; index size: N*N bits	



A < 2	

 2 < A	
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FastBit Compression	



10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111	



Example: 2015 bits	



Main Idea: Use run-length-encoding, but...	


partition bits into 31-bit groups [not 32 bit] on 32-bit machines	



31 bits	

 31 bits	

(62 groups skipped) …	

31 bits	



•  Name: Word-Aligned Hybrid (WAH) code (US patent)	


•  Key features: WAH is compute-efficient	



Ø Uses the run-length encoding (simple)	


Ø Allows operations directly on compressed bitmaps	


Ø Never breaks any words into smaller pieces during operations	


Ø Worst case index size 4N words, not N*N (without compression)	



Encode each group using one 32-bit word	



31-bit count=63	



Merge neighboring groups with identical bits	



31 literal bits	

0	

 1	

 0	

 31 literal bits	

0	



32  bits	



[Wu, Otoo, and Shoshani 2006]	
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Multi-Dimensional Query Performance	



Ø  Queries 5 out of 12 
most popular variables 
from STAR (2.2 million 
records)	



Ø  Average attribute 
cardinality (distinct 
values): 222,000	



Ø  FastBit uses WAH 
compression	



Ø  DBMS uses BBC 
compression	



Ø  FastBit >10X faster than 
DBMS	



Ø  FastBit indexes are 30% 
of raw data sizes	



5-dimensional	


queries	



>10X faster	



Wu, Otoo andShoshani 2002	
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Experimental Evaluation	


q Impact of indexing	


q Parallel index building	


q In situ index building	



q Measurements collected on Franklin at NERSC	


² ~10000 nodes	


² 8 cores	


² 8 GB memory	


² Lustre file system	



q Test problem sizes	


² Small: 3.6GB	


² Medium: 27GB	


² Large: 208GB	


² Large2: 173GB	
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Hits	


(%)	



99%	



20%	



1%	



Why Indexing?	



•  Speed-up with indexing: 3x – 199x 	
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But challenges remain…	



q Solution:	


– Building indexes in parallel!	



•  Index construction 
time	


– 3 min/3.6GB	



– 23 min/27GB	


– 3 hr/208GB	


– > 12hr/1.7TB	
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Parallel Index Construction	



•  Split and assign data blocks to multiple processors	



The data is on 
disk system	



D1	

 D2	

 D3	

 Dn	



I1	

 I2	

 I3	

 In	

Index	
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Performance with Parallelism	



•  Parallelism improves performance, but	


•  Why the benefit disappears after a certain 

parallelism factor?	



Hopper2 @ LBNL	


•  ~6000 nodes	


•  24 cores	


•  32-64 GB 

memory	


•  Lustre file 

system	
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Index Construction Time Breakdown	



•  Write performance shows little improvement!	


•  Why? Collective writes à Sync overhead	
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Optimization: Delayed Writes	



•  Reduce number of synchronizations!	


–  Delaying writing index whenever possible	



–  Retain created indexes in memory, then write them together	
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Storage	


System	



Computer 
node 
cluster	



I/O staging node cluster	



Write data	



Write data	



In situ 
Work	



-  Statistics	


-  Indexing	



-  Visualization	



Cluster with Dedicated Staging Nodes	
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Periodic	


Data	


Generation	



T1, TN+1, ..	

 S1	



S2	



SN	



T2, TN+2, ..	



TN, T2N, ..	



Storage	


System	



I1, IN+1, ..	



I2, IN+2, ..	



IN, I2N, ..	



Compute Node	

 DART Server	



Staging Node	



Experiments for In Situ Indexing	



Split data by 
timestep	



Staging node builds 
index directly from 

the given data	


22	





FastQuery - LDAV	

 10/24/11	



12	



Reading Time	



Small: 3.6GB	


Medium: 27GB	


Large: 208GB	


Large2: 173GB	



•  Getting data from another processor (in situ) is faster than getting 
data from disk	



Franklin @ LBNL	


•  ~10000 nodes	


•  8 cores	


•  8 GB memory	


•  Lustre file 

system	
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Summary	


•  Indexing dramatically reduces query time	



– But expensive with 12+ hours for 1 TB data	



•  Parallelism offers performance improvement for 
building index	


– But collective writes causes random delay	


– Delayed write optimization can mitigate the delay	



•  In situ indexing improves performance by 
significantly reducing data read time	
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Lessons Learned	


•  Avoiding synchronization	



– One delayed processor causes severe delay in writing	


–  It is fine to delay writing index blocks if the base data 

is safely stored already	



•  Choosing a moderate number of processors	


– Performance benefits are not linear!	


– Finding sweet spot may be interesting (maybe GLEAN 

could help)	



•  Tuning file system parameters	


– For example, striping count has direct performance 

impact to some extent	
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QUESTIONS?	



John Wu John.Wu@nersc.gov	


FastBit http://sdm.lbl.gov/fastbit/	



FastQuery http://portal.nersc.gov/svn/fq/	



ADIOS http://www.olcf.ornl.gov/center-projects/adios/	
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