

Parallel, In Situ Indexing for Data-intensive Computing

October 24, 2011 Jinoh Kim, Hasan Abbasi, Luis Chacon, Ciprian Docan, Scott Klasky, Qing Liu, Norbert Podhorszki, Arie Shoshani, John Wu

Introduction

- Many scientific applications produce large outputs
 - For example, GTC generates 260 GB data per 120 sec
 - But, a relatively small fraction of the data is interesting, e.g., blobs and clumps in fusion, magnetic nulls in magnetohydrodynamic models
- Challenge:
 - Accessing data on disk is slow
 - Disk is getting slower relative to computing power
- We explore performance impact on parallelism and in situ indexing for large data

ADIOS

- Adaptable IO Systems developed by ORNL
 - Proven read/write performance
 - Widely adopted as a middleware for data-intensive scientific computing
- Provides good architectural merits for "in situ" processing
 - By decoupling compute nodes with staging nodes
 - Staging nodes take full charges of writing data
- Examples
 - Statistics computation when data is generated
 - Min, max, average, standard deviation

http://www.olcf.ornl.gov/center-projects/adios/

Data Staging

Staging

Nodes

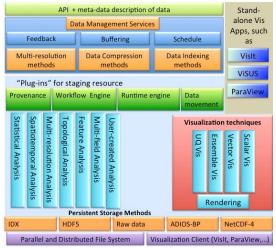
Computational Nodes

I/O Nodes

- Why asynchronous I/O?
 - Eliminates performance linkage between I/O subsystem and application
 - Decouples file system performance variations and limitations from application run time
- Enables optimizations based on dynamic number of writers
- · High bandwidth data extraction from application
- Scalable data movement with shared resources requires us to manage the transfers
- Scheduling properly can greatly reduce the impact of I/O

In Situ Processing

- The cost of data movement, both from the application to storage and from storage to analysis or visualization, is a deterrent to effective use of the data
- □ The output costs increase the overall application running time and often forces the user to reduce the total volume of data being produced by outputting data less frequently
- Input costs, especially to visualization, can make up to 80% of the total run time
- □ Solution: perform analysis operations *in situ* or in place

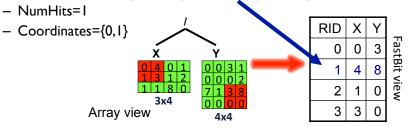


FastQuery Challenges & Approaches

- Mismatch between the array model used by scientific data and the relational model when applying database indexing technology
 - Map array data to relational table structure on-the-fly
- (2) Arbitrary hierarchical data layout
 - Deploy a flexible yet simple variable naming scheme based on regular expression
- (3) Diverse scientific data format
 - Define a unified array I/O interface
- (4) High index building cost
 - Parallel I/O strategy and system design to reduce the index building time

Mapping between FastBit & Array Data

- Each variable associated with a query is mapped to a column of a relational table *on-the-fly*
- · Elements of a multidimensional array are linearized
- An arbitrary number of arrays or subarrays can be placed into a logical table as long as they have the same array dimensions
- Ex: getNumHits("x[0:2,0:2] > 3 && y[2:4,2:4]>3")

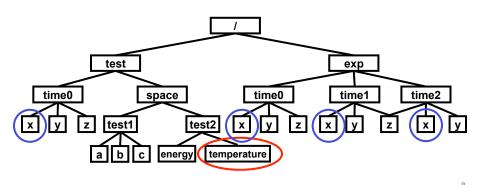


Flexible Naming Schema

• Naïve option: use the full path

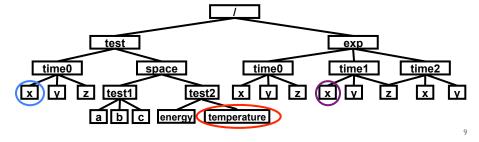
- getNumHits("/test/space/test2/temperature > 100")

- Can we do better?
 - getNumHits("x > 3")

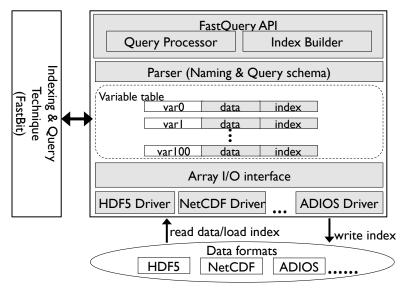


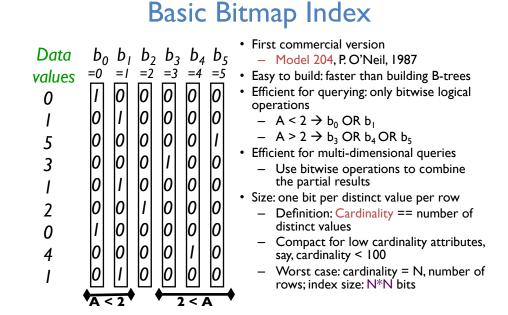
Flexible Naming Schema

- Separate variable name and path
 - Implemented with a tuple (varName, varPath)
 - Variable is identified by the rule "*/varPath/*/varName"
- Example:
 - ("temperature > 100", "") → "/test/space/test2/temperature > 100"
 - $("x > 3", test) \rightarrow "/test/time0/x > 3"$
 - ("x > 3", time1) → "/exp/time1/x > 3"
- Advantage:
 - Simplify query string
 - Decouple user specification from file layout

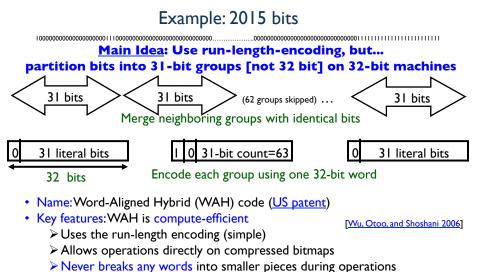


FastQuery System Architecture





FastBit Compression

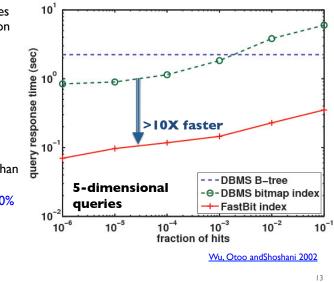


- > Worst case index size 4N words, not N*N (without compression)
- 12

П

Multi-Dimensional Query Performance

- Queries 5 out of 12 most popular variables from STAR (2.2 million records)
- Average attribute cardinality (distinct values): 222,000
- FastBit uses WAH compression
- DBMS uses BBC compression
- FastBit >10X faster than DBMS
- FastBit indexes are 30% of raw data sizes



Experimental Evaluation

- □ Impact of indexing
- □ Parallel index building
- □ In situ index building

Measurements collected on Franklin at NERSC

- \diamond ~10000 nodes
- \diamond 8 cores
- ♦ 8 GB memory
- \diamond Lustre file system
- Test problem sizes
 - ♦ Small: 3.6GB
 - ♦ Medium: 27GB
 - ♦ Large: 208GB
 - ♦ Large2: 173GB

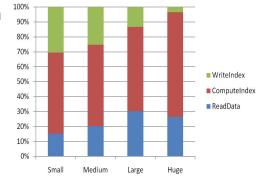
Hits (%)	Method	Small (3.6GB)	Medium (27GB)	Large (208GB)	Huge (1.7TB)
99%	Scanning	38.2s	321.3s	3176.7s	19534
	Indexing	9.6s	32.8s	55.5s	111.8s
	Speed-up	4x	10x	57x	175x
20%	Scanning	37.9s	327.3s	3132.4s	19705
	Indexing	11.7s	61.8s	153.6s	1195.4s
	Speed-up	3x	5x	20x	16x
1%	Scanning	48.0s	348.7s	3301.3s	19756s
	Indexing	7.8s	28.1s	41.0s	99.1s
	Speed-up	6x	12x	81x	199x

Why Indexing?

• Speed-up with indexing: 3x - 199x

But challenges remain...

- Index construction time
 - 3 min/3.6GB
 - 23 min/27GB
 - 3 hr/208GB
 - -> 12hr/1.7TB



□Solution:

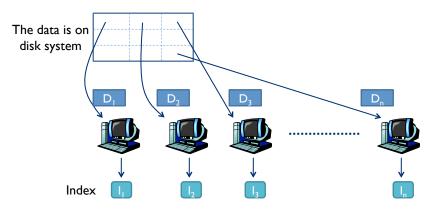
- Building indexes in parallel!

16

17

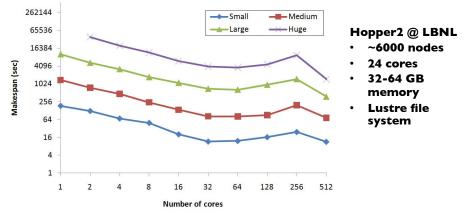
18

Parallel Index Construction



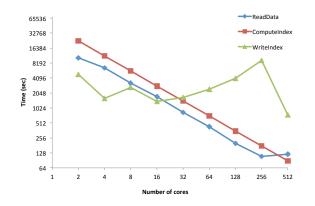
• Split and assign data blocks to multiple processors

Performance with Parallelism



- Parallelism improves performance, but
- Why the benefit disappears after a certain parallelism factor?

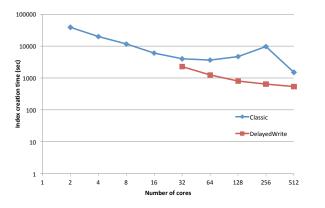
Index Construction Time Breakdown



- Write performance shows little improvement!
- Why? Collective writes \rightarrow Sync overhead

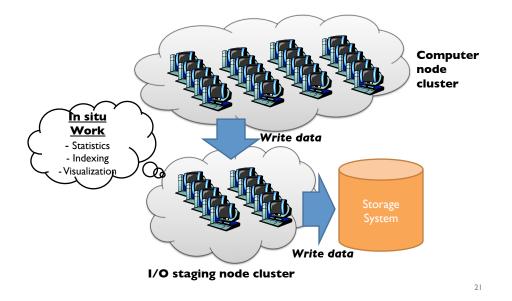
Optimization: Delayed Writes

- Reduce number of synchronizations!
 - Delaying writing index whenever possible
 - Retain created indexes in memory, then write them together

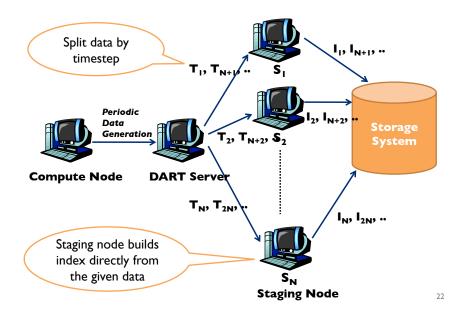


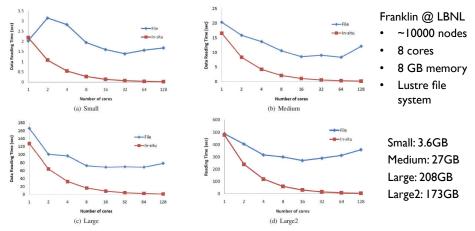
19

Cluster with Dedicated Staging Nodes



Experiments for In Situ Indexing





• Getting data from another processor (in situ) is faster than getting data from disk

23

Summary

- · Indexing dramatically reduces query time
 - But expensive with 12+ hours for 1 TB data
- Parallelism offers performance improvement for building index
 - But collective writes causes random delay
 - Delayed write optimization can mitigate the delay
- In situ indexing improves performance by significantly reducing data read time

Lessons Learned

- Avoiding synchronization
 - One delayed processor causes severe delay in writing
 - It is fine to delay writing index blocks if the base data is safely stored already
- · Choosing a moderate number of processors
 - Performance benefits are not linear!
 - Finding sweet spot may be interesting (maybe GLEAN could help)
- Tuning file system parameters
 - For example, striping count has direct performance impact to some extent

John Wu John.Wu@nersc.gov FastBit http://sdm.lbl.gov/fastbit/ FastQuery http://portal.nersc.gov/svn/fq/ ADIOS http://www.olcf.ornl.gov/center-projects/adios/

QUESTIONS?

26