
FastQuery - LDAV	

 10/24/11	

1	

Parallel, In Situ Indexing for
Data-intensive Computing	

October 24, 2011	

Jinoh Kim, Hasan Abbasi, Luis Chacon,
Ciprian Docan, Scott Klasky, Qing Liu,

Norbert Podhorszki, Arie Shoshani, John Wu	

Introduction	

•  Many scientific applications produce large outputs	

– For example, GTC generates 260 GB data per 120 sec	

– But, a relatively small fraction of the data is

interesting, e.g., blobs and clumps in fusion, magnetic
nulls in magnetohydrodynamic models	

•  Challenge:	

– Accessing data on disk is slow	

– Disk is getting slower relative to computing power	

•  We explore performance impact on parallelism
and in situ indexing for large data	

2	

FastQuery - LDAV	

 10/24/11	

2	

ADIOS	

•  Adaptable IO Systems developed by ORNL	

– Proven read/write performance	

– Widely adopted as a middleware for data-intensive

scientific computing	

•  Provides good architectural merits for “in situ”
processing	

– By decoupling compute nodes with staging nodes	

– Staging nodes take full charges of writing data	

•  Examples	

– Statistics computation when data is generated	

•  Min, max, average, standard deviation	

3	

http://www.olcf.ornl.gov/center-projects/adios/	

Data Staging	

•  Why asynchronous I/O?	

•  Eliminates performance linkage���

between I/O subsystem and���
application	

•  Decouples file system performance���
variations and limitations from���
application run time	

•  Enables optimizations based on���
dynamic number of writers	

•  High bandwidth data extraction from application	

•  Scalable data movement with shared resources requires us to
manage the transfers	

•  Scheduling properly can greatly reduce the impact of I/O	

FastQuery - LDAV	

 10/24/11	

3	

In Situ Processing	

q  The cost of data movement,

both from the application to
storage and from storage to
analysis or visualization, is a
deterrent to effective use of
the data	

q  The output costs increase the
overall application running time
and often forces the user to
reduce the total volume of data
being produced by outputting
data less frequently	

q  Input costs, especially to
visualization, can make up to
80% of the total run time	

q  Solution: perform analysis
operations in situ or in place	

FastQuery Challenges & Approaches	

(1)  Mismatch between the array model used by scientific

data and the relational model when applying database
indexing technology	

§  Map array data to relational table structure on-the-fly	

(2)  Arbitrary hierarchical data layout	

§  Deploy a flexible yet simple variable naming scheme

based on regular expression	

(3)  Diverse scientific data format	

§  Define a unified array I/O interface	

(4)  High index building cost	

§  Parallel I/O strategy and system design to reduce the

index building time	

6	

FastQuery - LDAV	

 10/24/11	

4	

Mapping between FastBit & Array Data	

•  Each variable associated with a query is mapped to a
column of a relational table on-the-fly	

•  Elements of a multidimensional array are linearized	

•  An arbitrary number of arrays or subarrays can be placed
into a logical table as long as they have the same array
dimensions	

•  Ex: getNumHits(“x[0:2,0:2] > 3 && y[2:4,2:4]>3”)	

–  NumHits=1	

–  Coordinates={0,1}	

 RID X Y

0 0 3
1 4 8
2 1 0
3 3 0

0	
 4	
 0	
 1	

1	
 3	
 1	
 2	

1	
 1	
 8	
 0	

/

X Y
0	
 0	
 3	

0	
 0	
 0	

7	
 1	
 3	

1	

2	

8	

0	
 0	
 0	
 0	
 3x4	

4x4	

7	

Array view

FastBit	
 view
	

Flexible Naming Schema	

•  Naïve option: use the full path	

–  getNumHits(“/test/space/test2/temperature > 100”)	

•  Can we do better?	

–  getNumHits(“x > 3”)	

/

test

x

time0

exp

time1 time2

z y x z y x y x

time0

z y test1

space

test2

energy temperature a c b

8	

FastQuery - LDAV	

 10/24/11	

5	

Flexible Naming Schema	

•  Separate variable name and path	

–  Implemented with a tuple (varName, varPath)	

–  Variable is identified by the rule “*/varPath/*/varName”	

•  Example:	

–  (“temperature > 100”, “”) è “/test/space/test2/temperature > 100”	

–  (“x > 3”, test) è “/test/time0/x > 3”	

–  (“x > 3”, time1) è “/exp/time1/x > 3”	

•  Advantage:	

–  Simplify query string	

–  Decouple user specification from file layout	

/

test

x

time0

exp

time1 time2

z y x z y x y x

time0

z y test1

space

test2

energy temperature a c b
9	

FastQuery System Architecture	

FastQuery API	

Array I/O interface	

Parser (Naming & Query schema)	

Index Builder	

Query Processor	

Variable table	

...	

HDF5	

 NetCDF	

 ADIOS	

	

Data formats	

Indexing &
 Q

uery	

Technique	

(FastBit)	

read data/load index	

 write index	

var0	

 index	

data	

var1	

 index	

data	

var100	

 index	

data	

HDF5 Driver	

 NetCDF Driver	

 ADIOS Driver	

...	

10	

FastQuery - LDAV	

 10/24/11	

6	

Basic Bitmap Index	

•  First commercial version	

–  Model 204, P. O’Neil, 1987	

•  Easy to build: faster than building B-trees	

•  Efficient for querying: only bitwise logical

operations	

–  A < 2 à b0 OR b1	

–  A > 2 à b3 OR b4 OR b5	

•  Efficient for multi-dimensional queries	

–  Use bitwise operations to combine

the partial results	

•  Size: one bit per distinct value per row	

–  Definition: Cardinality == number of
distinct values	

–  Compact for low cardinality attributes,
say, cardinality < 100	

–  Worst case: cardinality = N, number of
rows; index size: N*N bits	

A < 2	

 2 < A	

Data	

values	

0	

1	

5	

3	

1	

2	

0	

4	

1	

1	

0	

0	

0	

0	

0	

1	

0	

0	

0	

1	

0	

0	

1	

0	

0	

0	

1	

0	

0	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

1	

0	

0	

0	

1	

0	

0	

0	

0	

0	

0	

=0	

 =1	

 =2	

 =3	

 =4	

 =5	

b0	

 b1	

 b2	

 b3	

 b4	

 b5	

11	

FastBit Compression	

10000000000000000000011100000000000000000000000000000……………….00000000000000000000000000000001111111111111111111111111	

Example: 2015 bits	

Main Idea: Use run-length-encoding, but...	

partition bits into 31-bit groups [not 32 bit] on 32-bit machines	

31 bits	

 31 bits	

(62 groups skipped) …	

31 bits	

•  Name: Word-Aligned Hybrid (WAH) code (US patent)	

•  Key features: WAH is compute-efficient	

Ø Uses the run-length encoding (simple)	

Ø Allows operations directly on compressed bitmaps	

Ø Never breaks any words into smaller pieces during operations	

Ø Worst case index size 4N words, not N*N (without compression)	

Encode each group using one 32-bit word	

31-bit count=63	

Merge neighboring groups with identical bits	

31 literal bits	

0	

 1	

 0	

 31 literal bits	

0	

32 bits	

[Wu, Otoo, and Shoshani 2006]	

12	

FastQuery - LDAV	

 10/24/11	

7	

Multi-Dimensional Query Performance	

Ø  Queries 5 out of 12
most popular variables
from STAR (2.2 million
records)	

Ø  Average attribute
cardinality (distinct
values): 222,000	

Ø  FastBit uses WAH
compression	

Ø  DBMS uses BBC
compression	

Ø  FastBit >10X faster than
DBMS	

Ø  FastBit indexes are 30%
of raw data sizes	

5-dimensional	

queries	

>10X faster	

Wu, Otoo andShoshani 2002	

13	

Experimental Evaluation	

q Impact of indexing	

q Parallel index building	

q In situ index building	

q Measurements collected on Franklin at NERSC	

² ~10000 nodes	

² 8 cores	

² 8 GB memory	

² Lustre file system	

q Test problem sizes	

² Small: 3.6GB	

² Medium: 27GB	

² Large: 208GB	

² Large2: 173GB	

14	

FastQuery - LDAV	

 10/24/11	

8	

Hits	

(%)	

99%	

20%	

1%	

Why Indexing?	

•  Speed-up with indexing: 3x – 199x 	

15	

But challenges remain…	

q Solution:	

– Building indexes in parallel!	

•  Index construction
time	

– 3 min/3.6GB	

– 23 min/27GB	

– 3 hr/208GB	

– > 12hr/1.7TB	

16	

FastQuery - LDAV	

 10/24/11	

9	

Parallel Index Construction	

•  Split and assign data blocks to multiple processors	

The data is on
disk system	

D1	

 D2	

 D3	

 Dn	

I1	

 I2	

 I3	

 In	

Index	

17	

Performance with Parallelism	

•  Parallelism improves performance, but	

•  Why the benefit disappears after a certain

parallelism factor?	

Hopper2 @ LBNL	

•  ~6000 nodes	

•  24 cores	

•  32-64 GB

memory	

•  Lustre file

system	

18	

FastQuery - LDAV	

 10/24/11	

10	

Index Construction Time Breakdown	

•  Write performance shows little improvement!	

•  Why? Collective writes à Sync overhead	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(s
ec
)	

Number	
 of	
 cores	

ReadData	

ComputeIndex	

WriteIndex	

19	

Optimization: Delayed Writes	

•  Reduce number of synchronizations!	

–  Delaying writing index whenever possible	

–  Retain created indexes in memory, then write them together	

1	

10	

100	

1000	

10000	

100000	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

In
de

x	

cr
ea
7o

n	

7m

e	

(s
ec
)	

Number	
 of	
 cores	

Classic	

DelayedWrite	

20	

FastQuery - LDAV	

 10/24/11	

11	

Storage	

System	

Computer
node
cluster	

I/O staging node cluster	

Write data	

Write data	

In situ
Work	

-  Statistics	

-  Indexing	

-  Visualization	

Cluster with Dedicated Staging Nodes	

21	

Periodic	

Data	

Generation	

T1, TN+1, ..	

 S1	

S2	

SN	

T2, TN+2, ..	

TN, T2N, ..	

Storage	

System	

I1, IN+1, ..	

I2, IN+2, ..	

IN, I2N, ..	

Compute Node	

 DART Server	

Staging Node	

Experiments for In Situ Indexing	

Split data by
timestep	

Staging node builds
index directly from

the given data	

22	

FastQuery - LDAV	

 10/24/11	

12	

Reading Time	

Small: 3.6GB	

Medium: 27GB	

Large: 208GB	

Large2: 173GB	

•  Getting data from another processor (in situ) is faster than getting
data from disk	

Franklin @ LBNL	

•  ~10000 nodes	

•  8 cores	

•  8 GB memory	

•  Lustre file

system	

23	

Summary	

•  Indexing dramatically reduces query time	

– But expensive with 12+ hours for 1 TB data	

•  Parallelism offers performance improvement for
building index	

– But collective writes causes random delay	

– Delayed write optimization can mitigate the delay	

•  In situ indexing improves performance by
significantly reducing data read time	

24	

FastQuery - LDAV	

 10/24/11	

13	

Lessons Learned	

•  Avoiding synchronization	

– One delayed processor causes severe delay in writing	

–  It is fine to delay writing index blocks if the base data

is safely stored already	

•  Choosing a moderate number of processors	

– Performance benefits are not linear!	

– Finding sweet spot may be interesting (maybe GLEAN

could help)	

•  Tuning file system parameters	

– For example, striping count has direct performance

impact to some extent	

25	

QUESTIONS?	

John Wu John.Wu@nersc.gov	

FastBit http://sdm.lbl.gov/fastbit/	

FastQuery http://portal.nersc.gov/svn/fq/	

ADIOS http://www.olcf.ornl.gov/center-projects/adios/	

26	

