FastQuery - LDAV 10/24/11

receend] p QAK RUTGERS

National Laboratory

BERKELEY L AB

Parallel, In Situ Indexing for
Data-intensive Computing

October 24,201 |

Jinoh Kim, Hasan Abbasi, Luis Chacon,
Ciprian Docan, Scott Klasky, Qing Liu,
Norbert Podhorszki, Arie Shoshani, John Wu

% U.S. DEPARTMENT OF Office of

EN ERGY Science

Introduction

* Many scientific applications produce large outputs
— For example, GTC generates 260 GB data per 120 sec
— But, a relatively small fraction of the data is
interesting, e.g., blobs and clumps in fusion, magnetic
nulls in magnetohydrodynamic models
* Challenge:
— Accessing data on disk is slow
— Disk is getting slower relative to computing power

* We explore performance impact on parallelism
and in situ indexing for large data

FastQuery - LDAV 10/24/11

ADIOS
* Adaptable IO Systems developed by ORNL

— Proven read/write performance

— Widely adopted as a middleware for data-intensive
scientific computing

* Provides good architectural merits for “in situ”
processing
— By decoupling compute nodes with staging nodes
— Staging nodes take full charges of writing data

* Examples
— Statistics computation when data is generated

* Min, max, average, standard deviation

http://www.olcf.ornl.gov/center-projects/adios/ 3

Data Staging

— »
Computational Nodes
— »

* Decouples file system performance i | v
L. T i Staging
variations and limitations from | | > Nodesh 1/0 Nodes

application run time

- Enables optimizations based on éé
dynamic number of writers

« Why asynchronous 1/O?
* Eliminates performance linkage
between I/O subsystem and
application

+ High bandwidth data extraction from application

+ Scalable data movement with shared resources requires us to
manage the transfers

« Scheduling properly can greatly reduce the impact of I/O

FastQuery - LDAV

In Situ Processing

[The cost of data movement,
both from the application to
storage and from storage to
analysis or visualization, is a
deterrent to effective use of
the data

U The output costs increase the
overall application running time
and often forces the user to
reduce the total volume of data
being produced by outputting
data less frequently

U Input costs, especially to
visualization, can make up to
80% of the total run time

U4 Solution: perform analysis
operations in situ or in place

AP| + meta-data description of data | Stand-
Data Management Services alone Vis
| Apps, such
Ik Feedback J | Buffering J \ Schedule

Multi-resolution Data Compression Data Indexing
methods methods methods

“Plug-ins” for staging resource

as
Provenance | Workflow Engine | Runtime engine | Data "ﬁ_

w w
3 T |§ g ‘\§ § }S Visualization techniques
glzlz e g |z B EE
SRR z 5 g
213 15 s [IS |8 2 23 5
> 5l |z 2|8 M N >
s lEEEEE A 4 5
EEEBEEEE 3
@, = » = B <
= 1= 1s = G o =
i =] v, G = B
2 |2 |& 3
= |2 |
o 4
n |2 "
:i Rendering
Persistent Storage Methods
IDX | HDFS | Raw data | ADIOS-BP NetCDF-4
| Parallel and Distributed File System J | Visualization Client (Vislt, ParaView,...) J

FastQuery Challenges & Approaches

(1) Mismatch between the array model used by scientific
data and the relational model when applying database

indexing technology

* Map array data to relational table structure on-the-fly

(2) Arbitrary hierarchical data layout

» Deploy a flexible yet simple variable naming scheme
based on regular expression

(3) Diverse scientific data format

» Define a unified array |/O interface
(4) High index building cost
= Parallel I/O strategy and system design to reduce the

index building time

10/24/11

FastQuery - LDAV 10/24/11

Mapping between FastBit & Array Data

* Each variable associated with a query is mapped to a
column of a relational table on-the-fly

* Elements of a multidimensional array are linearized

* An arbitrary number of arrays or subarrays can be placed
into a logical table as long as they have the same array

dimensions
* Ex:getNumHits(“x[0:2,0:2] > 3 && y[2:4,2:4]>3")
— NumHits=| ,
— Coordinates={0, |} RD|X| Y[
x/\v oo|3|g
OIT] [ofo[3[a] wee—Gs & 1 @
112} o0/olo]2 <.
1111810} [7]4 2/1/0|2
3 [olo 2
Array view " 4xa 3130

Flexible Naming Schema

* Naive option: use the full path

— getNumHits(“/test/space/test2/temperature > 100”)
* Can we do better?

— getNumHits(“x > 3”)

[a][b]]c] (Jtemperature

FastQuery - LDAV 10/24/11

Flexible Naming Schema

* Separate variable name and path
— Implemented with a tuple (varName, varPath)
— Variable is identified by the rule “*/varPath/%*/varName”
* Example:
— (“temperature > 100”,“”) =» “/test/space/test2/temperature > [00”
— (“x > 37, test) = “/test/time0/x > 3"
— (“x> 37, timel) = “/exp/timel/x > 3"
* Advantage:
— Simplify query string
— Decouple user specification from file layout

LIt (D

FastQuery System Architecture

FastQuery API
’ Query Processor Index Builder ‘

z; ’ mmWf’arserﬁ(ﬁli\!ﬁming 87‘7993")’ thﬁf‘?a) 777777 ‘
T ? § {Variable table
§ 3 0a r d index
g-é g ' ' [varl | da:ta [index |

o c : H
3 [varl00 [data T Jindex 1

Array |/O interface

| HDFS5 Driver | NetCDF Drive] | ADIOS Driver |

Tread data/load index lwrite index

Data formats
| HDF5 | [NetCDF | [ADIOS

FastQuery - LDAV

Basic Bitmap Index

* First commercial version
Data by b; b, by by bs _ Model 204, P O'Neil, 1987

values =0 =1 =2 =3 =4 =5 . Easy to build: faster than building B-trees
0 Il (0] |0l 10] 0| |0| - Efficient for querying: only bitwise logical
operations
| o| || 0] 10| |0] O — A<2b,ORb,
5000 e e . A>2>0O0RbORE
* Efficient for multi-dimensional queries
3 0| (0] 10f |I] (0] [0 — Use bitwise operations to combine
| ol Il 10! ol lol |0 the partial results
* Size: one bit per distinct value per row
2 0| 0| || 0] (0] |0 — Definition: Cardinality == number of
0 I1 (0] ol 10] (o] 10 distinct values
— Compact for low cardinality attributes,
4 0| |0| |0] |0f |I] |0 say, cardinality < 100
— Worst case: cardinality = N, number of
/ 9 L 9 9 9 9 rows; index size: N*N bits
ot -5
A<2 2<A

FastBit Compression

Example: 2015 bits

100000000000000000000 | 1 100000000000000000000000000000................... .0000000000000000000000000000000 1 FTETTELEELEETELTELTTTITL
Main Idea: Use run-length-encoding, but...
partition bits into 31-bit groups [not 32 bit] on 32-bit machines

Merge neighboring groups with identical bits

IO 31 literal bits I II 0] 31-bit count=63| IO 31 literal bits I

32 bits - Encode each group using one 32-bit word

* Name:Word-Aligned Hybrid (WAH) code (US patent)
* Key features:WAH is compute-efficient [Wa, Otoo, and Shoshani 2006]
» Uses the run-length encoding (simple)
» Allows operations directly on compressed bitmaps
» Never breaks any words into smaller pieces during operations
» Worst case index size 4N words, not N*N (without compression)

10/24/11

FastQuery - LDAV 10/24/11

Multi-Dimensional Query Performance

» Queries 5 out of 12 .
most popular variables 10 . - : .
from STAR (2.2 million e —‘i)
records) o2

» Average attribute
cardinality (distinct
values): 222,000

» FastBit uses WAH
compression

» DBMS uses BBC
compression

» FastBit >10X faster than

---DBMS B-tree

DBM.S . 5-dimensional -©-DBMS bitmap index
» FastBit indexes are 30% queries —— FastBit index
of raw data sizes 10 .

>10X faster

query response time (sec)

2 -1

10

-6 5

107 107 10~
fraction of hits

10 10

Wu, Otoo andShoshani 2002

13

Experimental Evaluation

U Impact of indexing
U Parallel index building
U In situ index building

U Measurements collected on Franklin at NERSC
<-~10000 nodes
<~ 8 cores
<8 GB memory
<> Lustre file system
U Test problem sizes
<> Small: 3.6GB
< Medium: 27GB
<> Large: 208GB
< Large2: 173GB

FastQuery - LDAV

Why Indexing!?

Hits Method Small Medium Large Huge
(%) (3.6GB) | (27GB) | (208GB) | (1.7TB)
N Scanning | 38.2s 321.3s | 3176.7s | 19534
99% [Tndexing | 96s | 328 | .55 | 1118
Speed-up 4x 10x 57x 175x
20% Scanning 37.9s 327.3s | 31324s 19705
° | Indexing 11.7s 61.8s 153.6s | 1195.4s
Speed-up 3x 5x 20x 16x
1% Scanning | 48.0s 348.7s | 3301.3s | 19756s
° [Indexing 7.8s 2815 41.0s 99.Ts
Speed-up 6x 12x 81x 199x

* Speed-up with indexing: 3x — 99x

But challenges remain...

* |ndex construction

time

— 3 min/3.6GB
—23 min/27GB

— 3 hr/208GB

—> [2hr/1.7TB

WSolution:

— Building indexes in parallel!

100% -
90% -+
80%
70% -
60% -
50%
40% -+
30% -
20%
10%

0% -

Small

Medium

Large

Huge

u Writelndex
m Computelndex

m ReadData

10/24/11

FastQuery - LDAV 10/24/1 |

Parallel Index Construction

The data is on / \
disk system [
‘ ~

Index n

* Split and assign data blocks to multiple processors

Performance with Parallelism

262144 —4—Small ~fli—Medium
65536 Large Huge Hopper2 @ LBNL
.

16384 / ~6000 nodes
4096 . « 24 cores
TG « 32-64 GB
memory
%6 « Lustre file
64 system

16

Makespan (sec)

T T T
1 2 4 8 16 32 64 128 256 512

Number of cores
* Parallelism improves performance, but

* Why the benefit disappears after a certain
parallelism factor?

FastQuery - LDAV 10/24/1 |

Index Construction Time Breakdown

65536 =4—ReadData
32768 == Computelndex
16384 | Writelndex
8192 -
< 4096 |
&
o 2048 -
E
= 1024 -
512 -
256
128
64 T T T T T T T T "
1 2 4 8 16 32 64 128 256 512

Number of cores

* Write performance shows little improvement!
* Why? Collective writes = Sync overhead

Optimization: Delayed Writes

* Reduce number of synchronizations!
— Delaying writing index whenever possible

— Retain created indexes in memory, then write them together

100000

10000 \\ -

)
kA
£ 1000
]
<
=]
B
=
g
M 100
o) =4=Classic
<
£
== DelayedWrite
10
1
1 2 4 8 16 32 64 128 256 512
Number of cores 20

FastQuery - LDAV

Cluster with Dedicated Staging Nodes

Computer
node
cluster

- Statistics
- Indexing
- Visualizatio|

Write data

170 staging node cluster
21

Experiments for In Situ Indexing

Split data by @
. II’ IN+I’ hd
timestep
T, Taef/ S,

Periodic

Data '2» IN+2’
@ Generat:on 1-2’ TN+2’ sz
Compute Node DART Serv
TZN’
I Lano o

Staging node builds
index directly from
the given data sN
Staging Node 2

10/24/11

FastQuery - LDAV 10/24/11

Reading Time

Franklin @ LBNL
* ~10000 nodes

e 8cores

Data Reading Time (sec)

Data Reading Time (sec)
5

* 8 GB memory

Tz 4 8 % m s ¢ Lustre file

Number of cores Number of cores system
(a) Small (b) Medium

Small: 3.6GB
Medium: 27GB
Large: 208GB
Large2: 173GB

Reading Time (sec)

Data Reading Time (sec)

Number of cores Number of cores

() Large (d) Large2

Getting data from another processor (in situ) is faster than getting

data from disk
23

Summary

* Indexing dramatically reduces query time
— But expensive with |2+ hours for | TB data

* Parallelism offers performance improvement for
building index
— But collective writes causes random delay

— Delayed write optimization can mitigate the delay

* In situ indexing improves performance by
significantly reducing data read time

24

FastQuery - LDAV 10/24/11

Lessons Learned

* Avoiding synchronization
— One delayed processor causes severe delay in writing

— It is fine to delay writing index blocks if the base data
is safely stored already

* Choosing a moderate number of processors
— Performance benefits are not linear!

— Finding sweet spot may be interesting (maybe GLEAN
could help)

* Tuning file system parameters

— For example, striping count has direct performance
impact to some extent

25

QUESTIONS?

26

