INCREMENTAL, APPROXIMATE DATABASE QUERIES AND UNCERTAINTY FOR EXPLORATORY VISUALIZATION

Danyel Fisher
Microsoft Research

Exploratory Visualization

Handling Big Data for Infovis

Megabytes: More data than there are pixels on screen

Need to summarize, zoom.

Gigabytes: Mor memory

Need to think

disk Extreme Visualization:
Squeezing a Billion Records into a I

— Yo Squeezing a Billion Records into a Million Pixels

Ben Shneiderman

Human-Computer Interaction Lab & Department of Computer Science
University of Maryland
College Park, MD 20742
ben@cs.umd.edu

Big Data Visualization

Exploratory Big Data Visualization

Happiness over time

What is "good enough"?

- "I can act on this query"
- "I realize that this query is incorrect"
 - create a new query
- "I want a detailed response"
 - Wait for the full query to complete

What is "quick"?

- Milliseconds: Feels real-time
- Seconds: Laggy but possible
- Minutes: Forget context
- Hours: Forget question

Part I: INCREMENTAL DATABASES

Part II: VISUALIZATIONS

Part III: A PROTOTYPE

Part I

INCREMENTAL DATABASES

Techniques for Speeding Big Data

- Pre-aggregate (e.g. OLAP)
 - Fast but inflexible
- Parallel Computation
 - Hadoop Pig, Sawzall, DryadLinq: use existing data structures and add visualizations
 - Dremel: Use novel data structures
- Sampling & approximate queries

Control (1999)

Sampling and Approximate Queries

- Joe Hellerstein (et al)'s CONTROL project
- General concept:
 - Grab a little bit (more) of the database quickly
 - Estimate value & size of confidence interval
 - Repeat
- What can we do? Aggregate.
 - Some aggregates are very good. AVERAGE. COUNT.
 SUM.
 - Some aggregates are really bad. MAX (or Top-K). MIN.
 - Some aggregates have loose approximations.
 PERCENTILE. COUNT DISTINCT.

Is that powerful enough?

- Some things are just histograms:
 - Bar chart (sum)
 - Tag Clouds
 - Treemap (multilevel sum)
- Don't do a scatterplot, do a 2D histogram
- Even some machine learning:
 - K-Means: Locate average of group, find centroids, repeat

Computing Confidence Interval

- Estimator
 - Total elements
 - Mean seen so far
 - Number of elements that cross the filter so far
- Intuition: if you know about how the data you've seen so far behaves, you can guess the rest.
 Based on:
 - Standard deviation seen so far
 - Also nice: data min/max
 - Some theorems: std dev overall

Why Not Just Do a Straight Sample?

- Don't know how good you are without confidence intervals
- May need *larger* sample (over memory) to get tight intervals.
- How big is big enough?

Why Isn't Everyone Doing This?

- A good sample is random ... but a random sample requires accessing (potentially) all rows
- Need to maintain some data for bounds
 - E.g. column min, max
- Databases don't support incremental callbacks
- Joins can be tricky (but NoSQL?)

Part II

THE VISUALIZATION CHALLENGES

Uncertainty Visualization

- "Confidence" is something like "uncertainty"
- Lots of sources of uncertainty have been studied
 - Credibility of sources
 - Model uncertainty
 - Simulation uncertainty
 - Incompleteness
- Statistical and Quantitative Uncertainty

Olston & Mackinlay (2002)

Figure 1: Error bars and ambiguation applied to some common chart types.

Streit & Pham (2008)

Fig. 1. Visualizations of employment numbers in California. Years 2005-

User Study of Uncertainty Sanyal Zhang et al (2009)

Part III

PROTOTYPING IT

Why Prototype a Front End?

- Back-End
 - Technical implementation
 - Adapt to NoSQL
 - Ways to guide sampling
- Front-End
 - What visual codings work beside error bars? How do we extend to multiple dimensions?
 - How good is "good enough"? How fast is "fast enough"?
 - What sorts of problems work well?
 - User experience of these systems
 - Reducing communication overhead

A Full System View

The Desktop Edition

Call to Action

There's work to be done here and a very compelling source of approximate data.

Let's build these!

Thank you! (this work is not sponsored by DOE)

DANYELF@MICROSOFT.COMRESEARCH.MICROSOFT.COM/~DANYELF

BONUS SLIDES

Joins

- Lots of database research dedicated to joins
 - "Hash ripple" join
 - 10% sample, twice, is a 1% sample assuming independence
- Sentinel joins:
 - Some joins are impossible to do incrementally
 E.g. (select count(direct reports) where manager=president)
- Or live without them
 - NoSQL has very limited (and expensive) joining
 - Denormalized tables for distributed computation