Dax Toolkit:
A Proposed Framework for Data Analysis
and Visualization at Extreme Scale

Kenneth Moreland sandia National Laboratories
Utkarsh Ayachit kitware, Inc.
Berk Geveci Kitware, Inc.
Kwan-Liu Ma University of California at Davis

October 24, 2011

This work was supported in full by the DOE Office of Science, Advanced
Scientific Computing Research, under award number 10-014707, program
manager Lucy Nowell.

Dax Toolkit

A new visualization framework designed to exhibit the pervasive par-
allelism necessary for exascale machines.

Motivation Background
Our Approach
Related Work

Visualization Pipeline

Motivation Background
Our Approach
Related Work

Parallel Visualization Pipeline

Motivation Background

Petascale To Exascale

Our Approach
Related Work

Jaguar — XT5 | Exascale Increase
Cores 224,256 100 million = 1 billion | ~1,000x
Threads | 224,256 way 1 — 10 billion way ~50,000x
Memory | 300 Terabytes | 10 — 128 Petabytes ~500x

Estimates consolidated from International Exascale Software Project
Roadmap and the DOE Exascale Initiative Roadmap.

Motivation Background
Our Approach
Related Work

MPI-Only Approach?

‘ Jaguar — XT5H ‘ Exascale ‘ Increase
Cores 224,256 100 million — 1 billion | ~1,000x
Threads | 224,256 way 1 - 10 billion way ~50,000x

Memory | 300 Terabytes | 10 — 128 Petabytes ~500x

Vis object code + state : 20 MB
On Jaguar : 20 MB x 200,000 processes = 4 TB
On Exascale: 20 MB x 10,000,000,0000 processes = 200 PB!

Motivation Background
Our Approach
Related Work

Visualization Pipeline too heavyweight?

‘ Jaguar — XT5h ‘ Exascale ‘ Increase
Cores 224,256 100 million — 1 billion | ~1,000x
Threads | 224,256 way 1 — 10 billion way ~50,000 x

Memory | 300 Terabytes | 10 — 128 Petabytes ~500x

On Jaguar : 1 trillion cells — 5 million cells/thread
On Exascale: 500 trillion cells — 50K cells/thread

Motivation Background
Our Approach

Related Work

Revisiting the Filter

v

Lightweight Object

Serial Execution

v

v

No explicit partitioning

v

No access to larger
structures

No state

v

Motivation Background
Our Approach
Related Work

function (in, out)

Motivation Background
Our Approach

Related Work

w

Worklet l

function (in, out)

Motivation

Background
Our Approach
Related Work

foreach element

Worklet

Worklet

Motivation Background
Our Approach
Related Work

Existing Approaches

Multicore extensions to VTK pipeline [Vo, et al. 2010]
» Pros: Can be applied to most existing VTK filters.
» Cons: High overhead for each execution thread; VTK
algorithms optimized for sizeable chunks.
Functional field definitions (FEL/FM) [Bryson, et al. 1996]
> Pros: Mesh flexibility; low memory overhead; lazy evaluation;
straighforward to parallelize.
» Cons: Does not manage massive multi-threading; no
mechanism for topology generation.
MapReduce [Dean and Ghemawat 2008] [Vo, et al. 2011]
» Pros: simple programming model for massive parallelism;
custom systems specializing in large amounts of data.
» Cons: Difficult to cast visualization algorithms; global
shuffling opeartion inefficient because it ignores known
neighborhood or domain decompositions.

Overview

Dax Toolkit Execution Environment

Dax Toolkit

Overview

Dax Toolkit Execution Environment

Dax Programming Environment

Control | Execution
Environment | Environment

e .

Executive Worklet

v

Worklet

v

Worklet

Overview

Dax Toolkit Execution Environment

Data Model

> dax::exec::Workx*

Corresponds to work performed by each Worklet.

dax::exec::WorkMapField
dax::exec::WorkMapCell

> dax::exec::Field
Provides access to data arrays.

dax::exec::FieldCell
dax::exec::FieldPoint
dax::exec::FieldCoordinates

Overview

Dax Toolkit Execution Environment

Execution Environment

DAX_WORKLET void FieldWorklet (
DAX_IN dax::exec::WorkMapField& work,
DAX_IN dax::exec::Field& in_field,
DAX_OUT dax::exec::Field& out_field)

dax::Scalar in_value = in_field.GetScalar (work);
dax::Scalar out_value = .3
out_field.Set (work, out_value);

3

Overview

Dax Toolkit Execution Environment

Code Comparison

int vtkCellDerivatives::RequestData(...) DAX_WORKLET void CellGradient (...)
{ {

...[allocate output arrays]...

...[validate inputs]...

for (cellId=0; cellld < numCells; cellId++)

{

...[update progress]...

input->GetCell (cellld, cell); dax::exec::Cell cell(work);

subId = cell->GetParametricCenter (dax::Vector3 parametric_cell_center

pcoords); = dax::make_Vector3(0.5, 0.5, 0.5);
inScalars->GetTuples (
cell->PointIds, cellScalars);

scalars = cellScalars->GetPointer (0); dax::Vector3 value = cell.Derivative(
cell->Derivatives (parametric_cell_center,

subId, points,

pcoords, point_attribute,

scalars, 0);

1,

derivs);

outGradients ->SetTuple (cellIld, derivs); cell_attribute.Set (work, value);

¥

...[cleanupl...

} ¥

Results

Results

Implementation Assumptions

» GPU =~ Exascale Node

» CUDA = Development Environment on Exascale Node

Results

Performance Comparison

Mesh Size VTK Time Dax Time Speedup
Elevation — Gradient

1443 275s 0.013 (0.024) s 210 (114)

2563 15.52's 0.074 (0.135) s 210 (115)

5123 125.75s 0.589 (1.076) s 213 (117)
Elevation — Sine — Square — Cosine

1443 2.32s 0.002 (0.006) s 1169 (386)

2563 1299 s 0.013 (0.034) s 999 (382)

5123 103.88 s 0.110 (0.276) s 944 (376)

Performance comparison between Dax toolkit and VTK. Values in
parentheses show the corresponding values with data transfer times
included.

Results

Challenges and Ongoing Work

» Topology modifying Worklets e.g. Marching
Cubes/Streamlines

» /O and Rendering

Results

Conclusion

Filter 1

foreach element
-

Filter 2

foreach element

=

Traditional Pipeline

Executive

foreach element

Worklet 1

Worklet 2

Dax Pipeline

Results

Acknowledgements

This work was supported in full by the DOE Office of Science,
Advanced Scientific Computing Research, under award number
10-014707, program manager Lucy Nowell.

	Motivation
	Background
	Our Approach
	Related Work

	Dax Toolkit
	Overview
	Execution Environment

	Results

